scholarly journals Blue Light Directly Modulates the Quorum Network in the Human Pathogen Acinetobacter baumannii

Author(s):  
Marisel Romina Tuttobene ◽  
Gabriela Leticia Müller ◽  
Lucía Blasco ◽  
Lautaro Diacovich ◽  
Pamela Cribb ◽  
...  

Abstract Quorum sensing modulates bacterial collective behaviors including biofilm formation, motility and virulence in the important human pathogen Acinetobacter baumannii. Disruption of quorum sensing has emerged as a promising strategy with important therapeutic potential. In this work, we show that light modulates the production of secreted molecules that complement motility in the acyl-homoserine lactone (AHL) synthase mutant, abaI, at environmental temperatures. Also, AHLs were produced in higher levels in the dark than under blue light at environmental temperatures, a response that depends on AbaI and on the photoreceptor BlsA. BlsA interacts with the transcriptional regulator AbaR in the dark at environmental temperatures, inducing abaI expression. Under blue light, BlsA does not interact with AbaR, but induces expression of the lactonase aidA and quorum quenching, consistently with lack of motility at this condition. At temperatures found in warm-blooded hosts, the production of AHLs, quorum quenching as well as abaI and aidA expression were also modulated by light in a BlsA-independent manner. Finally, AbaI reduces A. baumannii's ability to kill C. albicans only in the dark both at environmental as well as at temperatures found in warm-blooded hosts. The overall data indicate that light directly modulates quorum network in A. baumannii.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marisel Romina Tuttobene ◽  
Gabriela Leticia Müller ◽  
Lucía Blasco ◽  
Natalia Arana ◽  
Mónica Hourcade ◽  
...  

AbstractQuorum sensing modulates bacterial collective behaviors including biofilm formation, motility and virulence in the important human pathogen Acinetobacter baumannii. Disruption of quorum sensing has emerged as a promising strategy with important therapeutic potential. In this work, we show that light modulates the production of acyl-homoserine lactones (AHLs), which were produced in higher levels in the dark than under blue light at environmental temperatures, a response that depends on the AHL synthase, AbaI, and on the photoreceptor BlsA. BlsA interacts with the transcriptional regulator AbaR in the dark at environmental temperatures, inducing abaI expression. Under blue light, BlsA does not interact with AbaR, but induces expression of the lactonase aidA and quorum quenching, consistently with lack of motility at this condition. At temperatures found in warm-blooded hosts, the production of AHLs, quorum quenching as well as abaI and aidA expression were also modulated by light, though in this case higher levels of AHLs were detected under blue light than in the dark, in a BlsA-independent manner. Finally, AbaI reduces A. baumannii's ability to kill C. albicans only in the dark both at environmental as well as at temperatures found in warm-blooded hosts. The overall data indicate that light directly modulates quorum network in A. baumannii.


2013 ◽  
Vol 58 (3) ◽  
pp. 1802-1805 ◽  
Author(s):  
Jeng Yeong Chow ◽  
Yuanyong Yang ◽  
Song Buck Tay ◽  
Kim Lee Chua ◽  
Wen Shan Yew

ABSTRACTAcinetobacter baumanniiis a major human pathogen associated with multidrug-resistant nosocomial infections; its virulence is attributed to quorum-sensing-mediated biofilm formation, and disruption of biofilm formation is an attractive antivirulence strategy. Here, we report the first successful demonstration of biofilm disruption in a clinical isolate ofA. baumanniiS1, using a quorum-quenching lactonase obtained by directed evolution; this engineered lactonase significantly reduced the biomass ofA. baumannii-associated biofilms, demonstrating the utility of this antivirulence strategy.


2013 ◽  
Vol 76 (2) ◽  
pp. 239-247 ◽  
Author(s):  
IQBAL KABIR JAHID ◽  
NA-YOUNG LEE ◽  
ANNA KIM ◽  
SANG-DO HA

Aeromonas hydrophila recently has received increased attention because it is opportunistic and a primary human pathogen. A. hydrophila biofilm formation and its control are a major concern for food safety because biofilms are related to virulence. Therefore, we investigated biofilm formation, motility inhibition, quorum sensing, and exoprotease production of this opportunistic pathogen in response to various glucose concentrations from 0.05 to 2.5% (wt/vol). More than 0.05% glucose significantly impaired (P < 0.05) quorum sensing, biofilm formation, protease production, and swarming and swimming motility, whereas bacteria treated with 0.05% glucose had activity similar to that of the control (0% glucose). A stage shift biofilm assay revealed that the addition of glucose (2.5%) inhibited initial biofilm formation but not later stages. However, addition of quorum sensing molecules N-3-butanoyl-DL-homoserine lactone and N-3-hexanoyl homoserine lactone partially restored protease production, indicating that quorum sensing is controlled by glucose concentrations. Thus, glucose present in food or added as a preservative could regulate acyl-homoserine lactone quorum sensing molecules, which mediate biofilm formation and virulence in A. hydrophila.


2008 ◽  
Vol 190 (9) ◽  
pp. 3386-3392 ◽  
Author(s):  
Chen Niu ◽  
Katy M. Clemmer ◽  
Robert A. Bonomo ◽  
Philip N. Rather

ABSTRACT The opportunistic human pathogen Acinetobacter baumannii strain M2 was found to produce distinct acyl-homoserine lactone (AHL) signals based on the use of an Agrobacterium tumefaciens traG-lacZ biosensor. An A. baumannii gene, designated abaI, was cloned and directed AHL production in recombinant Escherichia coli. The AbaI protein was similar to members of the LuxI family of autoinducer synthases and was predicted to be the only autoinducer synthase encoded by A. baumannii. The primary AHL signal directed by AbaI was identified by mass spectrometry as being N-(3-hydroxydodecanoyl)-l-HSL (3-hydroxy-C12-HSL). Minor amounts of at least five additional AHLs were also identified. The expression of abaI at the transcriptional level was activated by ethyl acetate extracts of culture supernatants or by synthetic 3-hydroxy-C12-HSL. An abaI::Km mutant failed to produce any detectable AHL signals and was impaired in biofilm development.


2014 ◽  
Vol 81 (4) ◽  
pp. 1477-1489 ◽  
Author(s):  
Nancy Weiland-Bräuer ◽  
Nicole Pinnow ◽  
Ruth A. Schmitz

ABSTRACTTwo reporter strains were established to identify novel biomolecules interfering with bacterial communication (quorum sensing [QS]). The basic design of theseEscherichia coli-based systems comprises a gene encoding a lethal protein fused to promoters induced in the presence of QS signal molecules. Consequently, theseE. colistrains are unable to grow in the presence of the respective QS signal molecules unless a nontoxic QS-interfering compound is present. The first reporter strain designed to detect autoinducer-2 (AI-2)-interfering activities (AI2-QQ.1) contained theE. coliccdBlethal gene under the control of theE. colilsrApromoter. The second reporter strain (AI1-QQ.1) contained theVibrio fischeriluxIpromoter fused to theccdBgene to detect interference with acyl-homoserine lactones. Bacteria isolated from the surfaces of several marine eukarya were screened for quorum-quenching (QQ) activities using the established reporter systems AI1-QQ.1 and AI2-QQ.1. Out of 34 isolates, two interfered with acylated homoserine lactone (AHL) signaling, five interfered with AI-2 QS signaling, and 10 were demonstrated to interfere with both signal molecules. Open reading frames (ORFs) conferring QQ activity were identified for three selected isolates (Photobacteriumsp.,Pseudoalteromonassp., andVibrio parahaemolyticus). Evaluation of the respective heterologously expressed and purified QQ proteins confirmed their ability to interfere with the AHL and AI-2 signaling processes.


2021 ◽  
Author(s):  
Mario López-Martín ◽  
Jean-Frédéric Dubern ◽  
Morgan R. Alexander ◽  
Paul Williams

Acinetobacter baumannii possesses a single divergent luxR/luxI-type quorum sensing (QS) locus named abaR/abaI. This locus also contains a third gene located between abaR and abaI which we term abaM that codes for an uncharacterized member of the RsaM protein family known to regulate N-acylhomoserine lactone (AHL) dependent QS in other β- and γ-proteobacteria. Here we show that disruption of abaM via a T26 insertion in A. baumannii strain AB5075 resulted in increased production of N-(3-hydroxydodecanoyl)-L-homoserine lactone (OHC12) and enhanced surface motility and biofilm formation. In contrast to the wild type and abaI::T26 mutant, the virulence of the abaM::T26 mutant was completely attenuated in a Galleria mellonella infection model. Transcriptomic analysis of the abaM::T26 mutant revealed that AbaM differentially regulates at least 76 genes including the csu pilus operon and the acinetin 505 lipopeptide biosynthetic operon, that are involved in surface adherence, biofilm formation and virulence. A comparison of the wild type, abaM::T26 and abaI::T26 transcriptomes, indicates that AbaM regulates ∼21% of the QS regulon including the csu operon. Moreover, the QS genes (abaI/abaR) were among the most upregulated in the abaM::T26 mutant. A. baumannii lux-based abaM reporter gene fusions revealed that abaM expression is positively regulated by QS but negatively auto-regulated. Overall, the data presented in this work demonstrates that AbaM plays a central role in regulating A. baumannii QS, virulence, surface motility and biofilm formation. Importance Acinetobacter baumanni is a multi-antibiotic resistant pathogen of global healthcare importance. Understanding Acinetobacter virulence gene regulation could aid the development of novel anti-infective strategies. In A. baumannii, the abaR and abaI genes that code for the receptor and synthase components of an N-acylhomoserine (AHL) lactone-dependent quorum sensing system (QS) are separated by abaM. Here we show that although mutation of abaM increased AHL production, surface motility and biofilm development, it resulted in the attenuation of virulence. AbaM was found to control both QS-dependent and QS-independent genes. The significance of this work lies in the identification of AbaM, an RsaM ortholog known to control virulence in plant pathogens, as a modulator of virulence in a human pathogen.


2021 ◽  
Author(s):  
Nicole E Smalley ◽  
Amy L Schaefer ◽  
Kyle L Asfahl ◽  
Crystal Perez ◽  
E Peter Greenberg ◽  
...  

The bacterium Pseudomonas aeruginosa is an opportunistic pathogen and it thrives in many different saprophytic habitats. In this bacterium acyl-homoserine lactone quorum sensing (QS) can activate expression of over 100 genes, many of which code for extracellular products. P. aeruginosa has become a model for studies of cell-cell communication and coordination of cooperative activities. We hypothesized that long-term growth of bacteria under conditions where only limited QS-controlled functions were required would result in a reduction in the size of the QS-controlled regulon. To test this hypothesis, we grew P. aeruginosa for about 1000 generations in a condition in which expression of QS-activated genes is required for growth. We compared the QS regulons of populations after about 35 generations to those after about 1000 generations in two independent lineages by using quorum quenching and RNA-seq technology. In one evolved lineage the number of QS-activated genes identified was reduced by about 70% and in the other by about 45%. Our results lend important insights about the variations in the number of QS-activated genes reported for different bacterial strains and, more broadly, about the environmental histories of P. aeruginosa.


Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1133
Author(s):  
Sagar Kiran Khadke ◽  
Jin-Hyung Lee ◽  
Yong-Guy Kim ◽  
Vinit Raj ◽  
Jintae Lee

Acinetobacter baumannii is a nosocomial pathogen, and its biofilms are tolerant to desiccation, nutrient starvation, and antimicrobial treatment on biotic and abiotic surfaces, tissues, and medical devices. Biofilm formation by A. baumannii is triggered by a quorum sensing cascade, and we hypothesized that fatty acids might inhibit its biofilm formation by interfering with quorum sensing. Initially, we investigated the antibiofilm activities of 24 fatty acids against A. baumannii ATCC 17978 and two clinical isolates. Among these fatty acids, two unsaturated fatty acids, nervonic and oleic acid, at 20 μg/mL significantly inhibited A. baumannii biofilm formation without affecting its planktonic cell growth (MICs were >500 μg/mL) and markedly decreased the motility of A. baumannii but had no toxic effect on the nematode Caenorhabditis elegans. Interestingly, molecular dynamic simulations showed that both fatty acids bind to the quorum sensing acyl homoserine lactone synthase (AbaI), and decent conformational stabilities of interactions between the fatty acids and AbaI were exhibited. Our results demonstrate that nervonic and oleic acid inhibit biofilm formation by A. baumannii strains and may be used as lead molecules for the control of persistent A. baumannii infections.


Sign in / Sign up

Export Citation Format

Share Document