scholarly journals Long-Term Metformin Effect on Endometrial Cancer Development Depending on Glucose Environment in vitro

2020 ◽  
Author(s):  
Amanda Machado Weber ◽  
Carsten Lange ◽  
Julia Jauckus ◽  
Thomas Strowitzki ◽  
Ariane Germeyer

Abstract Background: The incidence of endometrial cancer has increased worldwide over the past years. Common risk factors include obesity and metabolic disturbances, like hyperinsulinemia and insulin resistance, as well as prolonged and elevated estrogen exposure. Metformin, an anti-hyperglycemic and insulin-sensitizing biguanide, displayed anti-proliferative effects in recent studies. Therefore, metformin may act as a therapeutic and prophylactic anti-cancer agent in several tissues, including endometrium. Methods: Two different endometrial cancer cell lines, reflecting type I (Ishikawa) and type II endometrial cancer (HEC-1A) were cultured under normoglycemic (5.5mM) or hyperglycemic (17.0mM) conditions and treated with different concentrations of metformin (0.01–5.0mM). Results: Effects of metformin on proliferation, cell viability, clonogenicity and migration were investigated after treatment for 7d. Long-term treatment with metformin showed effects on cellular viability, proliferation and migration of endometrial cancer cells in a concentration- dependent manner in vitro. Additionally, glucose levels affected the outcome of the experiments. Conclusion: Our in vitro findings support the hypothesis that metformin has a direct effect on endometrial tissues and reflects the importance of the local glucose environment, suggesting that metformin may be considered as a potential adjuvant agent in endometrial cancer therapy due to its direct and indirect effects on endometrial development.

2021 ◽  
Vol 16 ◽  
pp. 263310552110202
Author(s):  
Sean X Naughton ◽  
Wayne D Beck ◽  
Zhe Wei ◽  
Guangyu Wu ◽  
Peter W Baas ◽  
...  

Among the various chemicals that are commonly used as pesticides, organophosphates (OPs), and to a lesser extent, carbamates, are most frequently associated with adverse long-term neurological consequences. OPs and the carbamate, pyridostigmine, used as a prophylactic drug against potential nerve agent attacks, have also been implicated in Gulf War Illness (GWI), which is often characterized by chronic neurological symptoms. While most OP- and carbamate-based pesticides, and pyridostigmine are relatively potent acetylcholinesterase inhibitors (AChEIs), this toxicological mechanism is inadequate to explain their long-term health effects, especially when no signs of acute cholinergic toxicity are exhibited. Our previous work suggests that a potential mechanism of the long-term neurological deficits associated with OPs is impairment of axonal transport (AXT); however, we had not previously evaluated carbamates for this effect. Here we thus evaluated the carbamate, physostigmine (PHY), a highly potent AChEI, on AXT using an in vitro neuronal live imaging assay that we have previously found to be very sensitive to OP-related deficits in AXT. We first evaluated the OP, diisopropylfluorophosphate (DFP) (concentration range 0.001-10.0 µM) as a reference compound that we found previously to impair AXT and subsequently evaluated PHY (concentration range 0.01-100 nM). As expected, DFP impaired AXT in a concentration-dependent manner, replicating our previously published results. In contrast, none of the concentrations of PHY (including concentrations well above the threshold for impairing AChE) impaired AXT. These data suggest that the long-term neurological deficits associated with some carbamates are not likely due to acute impairments of AXT.


2000 ◽  
Vol 350 (3) ◽  
pp. 777-783 ◽  
Author(s):  
Jean-Claude MONBOISSE ◽  
Laure RITTIE ◽  
Hasnae LAMFARRAJ ◽  
Roselyne GARNOTEL ◽  
Philippe GILLERY

Glycation and glycoxidation processes, which are increased in diabetes mellitus, are generally considered causative mechanisms of long-term complications. With reference to our previous studies, type-I and -IV collagens could induce differentially the adhesion and stimulation of polymorphonuclear leucocytes (PMNs). As PMNs play a role in sustained diabetic oxidative stress, the present study was designed to determine whether in vitro glycoxidation of these macromolecules could alter PMN adhesion, activation and migration. The adhesion of PMNs to in vitro-glycoxidized collagens was significantly increased when compared with control collagens: +37% (P < 0.05) and +99% (P < 0.01) for collagens I and IV, respectively. Glycoxidized type-I collagen increased the chemotactic properties of PMNs without significant stimulatory effect on respiratory burst, whereas pre-incubation of PMNs with glycoxidized type-I collagen induced a priming on subsequent stimulation by N-formyl-methionyl-leucyl-phenylalanine. Glycoxidation of type-IV collagen suppressed its inhibitory effect on further PMN stimulation or migration. Collectively, these results indicate that glycoxidation of two major extracellular-matrix collagens considerably alters their ability to modulate PMN migration and production of reactive oxygen species. This imbalance in PMN metabolism may be a major event in the increased oxidative status that characterizes diabetes mellitus.


2019 ◽  
Vol 2 (22.2) ◽  
pp. 155-164
Author(s):  
Liang Zhang

Background: There is an increasing local application of methylene blue (MB) in the treatment of discogenic low back pain (LBP) and percutaneous transforaminal endoscopic discectomy (PTED) procedures. MB could generate DNA damage and induce apoptosis in different cell types; however, the effects of MB on intervertebral disc (IVD) annulus fibrosus (AF) cells are not clearly understood. Objective: The objective of this study was to investigate the effects of different concentrations of MB on rat AF cells in vitro. Study Design: This study used an experimental design. Setting: This research was conducted at the Orthopaedic Institute of the Clinical Medical College of Yangzhou University. Methods: AF cells were isolated and cultured with different concentrations of MB (0, 2, 20, and 200 μg/mL) and assessed to determine the possible cytotoxic effects of MB. The cell proliferation was detected by Cell Counting Kit-8 (CCK-8) assay. The inverted phase-contrast microscopy was used to perform morphological observation of apoptotic cells, and flow cytometry was used to measure the incidence of cell apoptosis. The mRNA and protein expression levels of apoptosis-associated genes (caspase-3, Bcl-2, and Bax) and other related genes (collagen type I, transforming growth factor β1 [TGF-β1], fibroblast growth factor [bFGF], and tissue inhibitor of metalloproteinase-1 [TIMP-1]) were analyzed by quantitative real-time PCR (RT-PCR) and Western blotting. Results: Our results indicated that MB reduced cell viability in a concentration- and timedependent manner. MB also induced marked AF cell apoptosis in a concentration-dependent manner observed by inverted phase-contrast microscopy, flow cytometry, and indicated by the increased expression of caspase-3. Both RT-PCR and Western blotting revealed significant upregulation of Bax and caspase-3 expression levels accompanied by decreased expression of Bcl2 in a concentration-dependent manner. Moreover, collagen type I, TGF-β1, bFGF, and TIMP-1 mRNA and protein levels were also found to be decreased by MB in a concentration-dependent manner. Limitations: Limitations of this study were the in vitro study design and lack of in vivo validation of the observed effects of MB on human IVD cells. Conclusions: Our results indicate that a high concentration of MB can not only inhibit proliferation and paracrine function of AF cells, but can also induce cell apoptosis in a concentration-dependent manner, suggesting that it is necessary to choose low concentrations of MB in practical application and limit the use of MB in the treatment of discogenic LBP to research protocols. Key words: Methylene blue, annulus fibrosus cell, proliferation, apoptosis, paracrine


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Ze Zhuang ◽  
Dongjie Yu ◽  
Zheng Chen ◽  
Dezhao Liu ◽  
Guohui Yuan ◽  
...  

Joint contracture is increasingly regarded as a clinical problem that leads to irreversible dysfunction of the joint. It is a pathophysiological process following joint injury, which is marked by the activation of myofibroblasts. There is currently no effective treatment for the prevention of joint contracture. Curcumin is a polyphenol pigment extracted from turmeric, which possesses anti-inflammatory, antioxidative, and antitumor properties. In the present study, we demonstrated that curcumin exerts a protective effect against joint contracture via the inhibition of myofibroblast proliferation and migration in a time- and concentration-dependent manner. Moreover, we indicated that phosphatase and tension homolog (PTEN) was downregulated in myofibroblasts in vitro and in the contracture capsule tissues of patients in vivo. Additionally, western blot analysis revealed a negative correlation between the expression levels of PTEN and the fibrosis marker protein alpha smooth muscle cell actin. Methylation-specific PCR results suggested that curcumin was able to demethylate PTEN in a similar manner to the demethylation agent 5-azacytidine, increasing PTEN expression and further inhibiting phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin signaling. In conclusion, our data illustrate part of the mechanism of curcumin inhibition in joint contracture. These results support the hypothesis that curcumin may potentially be used as a novel candidate for the treatment of joint contracture.


2020 ◽  
Vol 17 (6) ◽  
pp. 147916412097089
Author(s):  
Fuheng Chen ◽  
Dongdong Ma ◽  
Aizhong Li

Background: The current study aimed to explore the role of SENP3 in endothelial cell dysfunction in a high-glucose setting. Methods: The gene and protein expressions of SENP3 in high-glucose cultured HAECs were examined using quantitative PCR and western blotting. The effects of SENP3 on HAEC viability, apoptosis, migration, and endothelial–monocyte adhesion were evaluated in vitro by knockdown. Moreover, a mouse streptozotocin-induced type I diabetes model was established for SENP3 expression assessment. In addition, the effects of SENP3 on ROS-related signaling pathways were investigated in high-glucose cultured HAECs. Results: Significantly increased levels of SENP3 mRNA and protein were found in high-glucose cultured HAECs in a time-dependent manner. SENP3 knockdown reversed high glucose-induced HAEC viability, apoptosis, and migration reduction. SENP3 knockdown attenuated the high glucose-induced intercellular adhesion of THP-1 monocytic cells and HAECs via downregulation of ICAM-1 and VCAM-1 expression. Increased levels of SENP3, ICAM-1, and VCAM-1 expression were observed in the aorta tissue of mice with type I diabetes. Downregulation of SENP3 expression was observed in HAECs cultured with high glucose levels using the free radical scavenger N-acetyl-L-cysteine or NOX4 siRNA. Conclusions: SENP3 was involved in high glucose-induced endothelial dysfunction, and ROS-dependent signaling served as the mechanism.


2000 ◽  
Vol 113 (3) ◽  
pp. 483-491 ◽  
Author(s):  
F.A. Steinbock ◽  
B. Nikolic ◽  
P.A. Coulombe ◽  
E. Fuchs ◽  
P. Traub ◽  
...  

Plectin, the largest and most versatile member of the cytolinker/plakin family of proteins characterized to date, has a tripartite structure comprising a central 200 nm-long (α)-helical rod domain flanked by large globular domains. The C-terminal domain comprises a short tail region preceded by six highly conserved repeats (each 28–39 kDa), one of which (repeat 5) contains plectin's intermediate filament (IF)-binding site. We used recombinant and native proteins to assess the effects of plectin repeat 5-binding to IF proteins of different types. Quantitative Eu(3+)-based overlay assays showed that plectin's repeat 5 domain bound to type III IF proteins (vimentin) with preference over type I and II cytokeratins 5 and 14. The ability of both types of IF proteins to self-assemble into filaments in vitro was impaired by plectin's repeat 5 domain in a concentration-dependent manner, as revealed by negative staining and rotary shadowing electron microscopy. This effect was much more pronounced in the case of vimentin compared to cytokeratins 5/14. Preassembled filaments of both types became more and more crosslinked upon incubation with increasing concentrations of plectin repeat 5. However, at high proportions of plectin to IF proteins, disassembly of filaments occurred. Again, vimentin filaments proved considerably more sensitive towards disassembly than those composed of cytokeratins 5 and 14. In general, IFs formed from recombinant proteins were found to be slightly more responsive towards plectin influences than their native counterparts. A dose-dependent plectin-inflicted collapse and putative disruption of IFs was also observed in vivo after ectopic expression of vimentin and plectin's repeat 5 domain in cotransfected vimentin-deficient SW13 (vim(-)) cells. Our results suggest an involvement of plectin not only in crosslinking and stabilization of cytoskeletal IF networks, but also in regulation of their dynamics.


Author(s):  
Xianghua Yin ◽  
Yan Liu ◽  
Jiarui Qin ◽  
Yixuan Wu ◽  
Jiayan Huang ◽  
...  

Endometrial cancer (EC) is a common leading cause of cancer-related death in women, which is associated with the increased level of estrogen in the body. Artesunate (ART), an active compound derived from Artemisia annua L., exerted antitumor properties in several cancer types. However, the role of artesunate and the molecular basis on EC remains unclear. Here, we aimed to explore the effects and mechanisms of artesunate. Our results identified that estrogen receptor-α (ER-α) was a key factor for the type I EC (ER-α-positive), which might suppress the downstream LKB1/AMPK/mTOR pathway. Besides, we found ART significantly inhibited tumor proliferation in a dose-dependent manner. Mechanistic studies identified that ART led to tumor cell apoptosis and cell cycle arrest by downregulating the ER-α expression and activating the LKB1/AMPK/mTOR pathway. In addition, we found ART could increase the expression of heart and neural crest derivatives expressed 2 (HAND2) in the ER-α-positive EC cells, which could interact with ER-α. Through the gain-and loss-function experiments, we showed that over expression of HAND2 repressed the proliferation and migration of ER-α-positive EC cells via inhibition of ER-α expression. HAND2 knockdown increased ER-α expression and alleviated the antitumor effect of ART in vitro and in vivo. Overall, our study first showed that ART could be an effective antitumor agent through modulating ER-α-mediated LKB1/AMPK/mTOR pathway in the HAND2 dependent manner. Our findings provide an effective therapeutic agent for ER-α-positive EC treatment.


2002 ◽  
Vol 283 (2) ◽  
pp. R487-R495 ◽  
Author(s):  
Tetsu Akimoto ◽  
Helen Liapis ◽  
Marc R. Hammerman

To delineate the roles of O2 and vascular endothelial growth factor (VEGF) in the process of angiogenesis from the embryonic aorta, we cultured mouse embryonic aorta explants (thoracic level to lateral vessels supplying the mesonephros and metanephros) in a three-dimensional type I collagen gel matrix. During 8 days of culture under 5% O2, but not room air, the addition of VEGF to explants stimulated the formation of CD31-positive, Flk-1-positive, Gs-IB4-positive structures in a concentration-dependent manner. Electron microscopy showed the structures to be capillary-like. VEGF-induced capillary-like structure formation was inhibited by sequestration of VEGF via addition of soluble Flt-1 fusion protein or anti-VEGF antibodies. Expression of Flk-1, but not Flt-1, was increased in embryonic aorta cultured under 5% O2 relative to room air. Our data suggest that low O2 upregulates Flk-1 expression in embryonic aorta in vitro and renders it more responsive to VEGF.


2021 ◽  
Vol 22 (20) ◽  
pp. 10930
Author(s):  
Shuai Guo ◽  
Xue Bai ◽  
Sai Shi ◽  
Yawen Deng ◽  
Xianjiang Kang ◽  
...  

Lung cancer has the highest rate of incidence and mortality among all cancers. Most chemotherapeutic drugs used to treat lung cancer cause serious side effects and are susceptible to drug resistance. Therefore, exploring novel therapeutic targets for lung cancer is important. In this study, we evaluated the potential of TMEM16A as a drug target for lung cancer. Homoharringtonine (HHT) was identified as a novel natural product inhibitor of TMEM16A. Patch-clamp experiments showed that HHT inhibited TMEM16A activity in a concentration-dependent manner. HHT significantly inhibited the proliferation and migration of lung cancer cells with high TMEM16A expression but did not affect the growth of normal lung cells in the absence of TMEM16A expression. In vivo experiments showed that HHT inhibited the growth of lung tumors in mice and did not reduce their body weight. Finally, the molecular mechanism through which HHT inhibits lung cancer was explored by western blotting. The findings showed that HHT has the potential to regulate TMEM16A activity both in vitro and in vivo and could be a new lead compound for the development of anti-lung-cancer drugs.


2003 ◽  
Vol 284 (2) ◽  
pp. C371-C377 ◽  
Author(s):  
Tetsu Akimoto ◽  
Marc R. Hammerman

To delineate the roles that oxygen and fibroblast growth factors (FGFs) play in the process of angiogenesis from the embryonic aorta, we cultured mouse embryonic aorta explants (thoracic level to lateral vessels supplying the mesonephros and metanephros) in a three-dimensional type I collagen gel matrix. During 8 days of culture under 5% O2, but not room air, the addition of FGF2 to explants stimulated the formation of Gs-IB4-positive, CD31-positive, and Flk-1-positive microvessels in a concentration-dependent manner. FGF2-stimulated microvessel formation was inhibited by sequestration of FGF2 via addition of soluble FGF receptor (FGFR) chimera protein or anti-FGF2 antibodies. FGFR1 and FGFR2 were present on explants. Levels of FGFR1, but not FGFR2, were increased in embryonic aorta cultured under 5% O2 relative to room air. Our data suggest that low oxygen upregulates FGFR1 expression in embryonic aorta in vitro and renders it more responsive to FGF2.


Sign in / Sign up

Export Citation Format

Share Document