scholarly journals Indoxyl sulfate has a dominant role regarding the risks during different stages of chronic kidney disease

2020 ◽  
Author(s):  
Cheng-Hsu Chen ◽  
Shih-Chien Huang ◽  
Pei-Chih Lin ◽  
Shang-Feng Tsai ◽  
Yi-Chia Huang

Abstract Background: Increased levels of uremic toxins and decreased antioxidant capacities have a significant impact on the progression of chronic kidney disease (CKD). However, it is unclear whether they interact with each other in order to mediate the damage of renal function. The purpose of this study was to determine whether uremic toxins [i.e., homocysteine and indoxyl sulfate (IS)] and glutathione-dependent antioxidant enzyme activities are dependently or independently associated with each other in affecting renal function during different stages of CKD patients.Methods: One hundred thirty-two patients diagnosed with CKD stage 1 to 5 participated in this cross-sectional study.Results: Patients who had reached an advanced CKD stage experienced a gradual increase in plasma uremic toxin levels, along with decreased glutathione peroxidase (GSH-Px) activities. Plasma homocysteine, cysteine and IS concentrations were positively associated with each other, but negatively correlated to GSH-Px activity levels after adjusting potential confounders in all CKD patients. Although plasma homocysteine, cysteine, IS and GSH-Px levels were significantly associated with renal function, only plasma IS levels still had a significant association with renal function after these parameters were simultaneously adjusted.Conclusions: IS plays a more dominant role than other factors in affecting renal function, where a higher IS concentration needs to be controlled in order to defer the progressive loss of renal function.

2020 ◽  
Vol 41 (Supplement_1) ◽  
Author(s):  
H Koike ◽  
I Watanabe ◽  
KATSUYA Akitsu ◽  
MASAYA Shinohara ◽  
TOSHIO Kinoshita ◽  
...  

Abstract Introduction It is well known that catheter ablation (CA) for patients with atrial fibrillation (AF) improves their renal function. However, the precise mechanism of improving a renal function, such as a transition of the uremic toxin is unclear. Purpose Indoxyl sulfate (IS), a protein-bound uremic toxin, induces chronic kidney disease (CKD) and AF. This study aimed to investigate the transition of serum IS level in the AF patients with and without CKD after CA. Methods A total of 138 consecutive AF patients who underwent CA and maintained sinus rhythm were prospectively enrolled (age 65.5 ± 10.7 years, paroxysmal AF 67.4%). Patients were divided into 4 groups (non-CKD/low-IS:68, non-CKD/high-IS:28, CKD/low-IS:13, CKD/high-IS:29). CKD was defined as CKD stage III (estimated glomerular filtration rate (eGFR) 30-60 ml/min/1.73m2), and high-IS was defined according to the mean of IS (IS≥1.1 μg/ml) before CA. Plasma IS levels and eGFR were determined before and at 1 year after CA. We evaluated the relationship between the IS and eGFR after CA among the 4 groups. Results CA significantly improved the eGFR in patients with CKD (from 50.2 ± 5.7 to 55.4 ± 10.8 ml/min/1.73m2, p < 0.001). The serum IS level in the patients with non-CKD/high-IS was significantly decreased (from 1.7 ± 0.7 to 1.1 ± 0.6 μg/ml, p < 0.001). However, the serum IS level in the patients with CKD/high-IS was not improved (from 1.9 ± 0.9 to 1.7 ± 0.7 μg/ml, p = 0.22) and significantly higher than that in the others (p < 0.001), regardless of improving their eGFR (Figure). Furthermore, the multiple regression analysis revealed that the ΔIS, between before and after CA, was independent of eGFR. Conclusion The change of IS in the patients with CKD was significantly different from that in those without CKD. In the patients with CKD, CA improved their eGFR, however, the serum level of IS, a protein-bound uremic toxin, was not improved after CA. Abstract P11 Figure. Serial Change of eGFR and IS


2021 ◽  
Vol 22 (12) ◽  
pp. 6270
Author(s):  
Chia-Ter Chao ◽  
Shih-Hua Lin

The accumulation of uremic toxins (UTs) is a prototypical manifestation of uremic milieu that follows renal function decline (chronic kidney disease, CKD). Frailty as a potential outcome-relevant indicator is also prevalent in CKD. The intertwined relationship between uremic toxins, including small/large solutes (phosphate, asymmetric dimethylarginine) and protein-bound ones like indoxyl sulfate (IS) and p-cresyl sulfate (pCS), and frailty pathogenesis has been documented recently. Uremic toxins were shown in vitro and in vivo to induce noxious effects on many organ systems and likely influenced frailty development through their effects on multiple preceding events and companions of frailty, such as sarcopenia/muscle wasting, cognitive impairment/cognitive frailty, osteoporosis/osteodystrophy, vascular calcification, and cardiopulmonary deconditioning. These organ-specific effects may be mediated through different molecular mechanisms or signal pathways such as peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α), mitogen-activated protein kinase (MAPK) signaling, aryl hydrocarbon receptor (AhR)/nuclear factor-κB (NF-κB), nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), Runt-related transcription factor 2 (RUNX2), bone morphogenic protein 2 (BMP2), osterix, Notch signaling, autophagy effectors, microRNAs, and reactive oxygen species induction. Anecdotal clinical studies also suggest that frailty may further accelerate renal function decline, thereby augmenting the accumulation of UTs in affected individuals. Judging from these threads of evidence, management strategies aiming for uremic toxin reduction may be a promising approach for frailty amelioration in patients with CKD. Uremic toxin lowering strategies may bear the potential of improving patients’ outcomes and restoring their quality of life, through frailty attenuation. Pathogenic molecule-targeted therapeutics potentially disconnect the association between uremic toxins and frailty, additionally serving as an outcome-modifying approach in the future.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Laurent Metzinger

Abstract Background and Aims The gene program is controlled at the post-transcriptional level by the action of small non-coding RNAs known as microRNAs (miRNAs), short, single-stranded molecules that control mRNA stability or translational repression via base pairing with regions in the 3' untranslated region of their target mRNAs. Recently, considerable progress has been made to elucidate the roles of miRNAs in vascular pathogenesis and develop the use of miRNAs as biomarkers, and innovative drugs. We demonstrated during the last decade that miRNAs miR-126 and miR-223 are implicated in the course of chronic kidney disease (CKD) and cardiovascular damage. miR-223 expression is enhanced in vascular smooth muscle cells (VSMCs) subjected to an uremic toxin and also in aortas of a murine model of CKD. As restenosis is a common complication of angioplasty, in which neointimal hyperplasia results from migration of VSMCs into the vessel lumen we measured the effect of miR-223 modulation on restenosis in a rat model of carotid artery after balloon injury. We over-expressed and inhibited miR-223 expression using adenoviral vectors, coding a pre-miR-223 sequence or a sponge sequence, used to trap endogenous microRNA, respectively. We demonstrated that inhibiting miR-223 function significantly reduced neointimal hyperplasia by almost half in carotids. Thus down-regulating miR-223 could be a potential therapeutic approach to prevent restenosis after angioplasty. We also correlated miR-126 and miR-223 expression with clinical outcomes in a large cohort of CKD patients, in collaboration with the University Hospital of Ghent (Belgium) and Ambroise Paré Hospital, France. We evaluated both miRNA’s link with all-cause mortality and cardiovascular and renal events over a 6-year follow-up period. The serum levels of miR-126 and miR-223 were decreased as CKD stage advanced, and patients with higher levels of miR-126 and miR-223 had a higher survival rate. Similar results were observed for cardiovascular and renal events. In conclusion, CKD is associated with a decrease in circulating miR-126 and miR-223 levels in CKD patients. We will also present links between several uremic toxin concentrations and miRNA concentration in the patients of this cohort. Finally, anemia is a common feature of CKD that is associated with cardiovascular disease and poor clinical outcomes. A mixture of uremic toxins accumulates in the blood of CKD patients during the course of the disease, and there is good evidence that they modulate erythropoiesis, explaining at least partly anemia. The exact molecular mechanisms implicated are however poorly understood, although recent progresses have been made to identify key components in the CKD process. We will present results on the effect of uremic toxins on erythropoiesis, having an impact on cell metabolism during this process. Taken together, our findings could be of interest to both researchers and clinicians working in the field since they might shed new light on the molecular mechanisms involved in the CKD process. MicroRNAs implicated in Chronic Kidney Disease Pr. Laurent Metzinger, UR-UPJV 4666 HEMATIM, CURS, Université de Picardie Jules Verne, CHU Amiens Sud, Avenue René Laënnec, Salouel, F-80054, Amiens, France. Tel: (+33) 22 82 53 56, Email: [email protected]


Author(s):  
Ying Li ◽  
Jing Yan ◽  
Minjia Wang ◽  
Jing Lv ◽  
Fei Yan ◽  
...  

AbstractEvidence has been shown that indoxyl sulfate (IS) could impair kidney and cardiac functions. Moreover, macrophage polarization played important roles in chronic kidney disease and cardiovascular disease. IS acts as a nephron-vascular toxin, whereas its effect on macrophage polarization during inflammation is still not fully elucidated. In this study, we aimed to investigate the effect of IS on macrophage polarization during lipopolysaccharide (LPS) challenge. THP-1 monocytes were incubated with phorbol 12-myristate-13-acetate (PMA) to differentiate into macrophages, and then incubated with LPS and IS for 24 h. ELISA was used to detect the levels of TNFα, IL-6, IL-1β in THP-1-derived macrophages. Western blot assay was used to detect the levels of arginase1 and iNOS in THP-1-derived macrophages. Percentages of HLA-DR-positive cells (M1 macrophages) and CD206-positive cells (M2 macrophages) were detected by flow cytometry. IS markedly increased the production of the pro-inflammatory factors TNFα, IL-6, IL-1β in LPS-stimulated THP-1-derived macrophages. In addition, IS induced M1 macrophage polarization in response to LPS, as evidenced by the increased expression of iNOS and the increased proportion of HLA-DR+ macrophages. Moreover, IS downregulated the level of β-catenin, and upregulated the level of YAP in LPS-stimulated macrophages. Activating β-catenin signaling or inhibiting YAP signaling suppressed the IS-induced inflammatory response in LPS-stimulated macrophages by inhibiting M1 polarization. IS induced M1 macrophage polarization in LPS-stimulated macrophages via inhibiting β-catenin and activating YAP signaling. In addition, this study provided evidences that activation of β-catenin or inhibition of YAP could alleviate IS-induced inflammatory response in LPS-stimulated macrophages. This finding may contribute to the understanding of immune dysfunction observed in chronic kidney disease and cardiovascular disease.


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 936
Author(s):  
Chien-Lin Lu ◽  
Cai-Mei Zheng ◽  
Kuo-Cheng Lu ◽  
Min-Tser Liao ◽  
Kun-Lin Wu ◽  
...  

The accumulation of the uremic toxin indoxyl sulfate (IS) induces target organ damage in chronic kidney disease (CKD) patients, and causes complications including cardiovascular diseases, renal osteodystrophy, muscle wasting, and anemia. IS stimulates reactive oxygen species (ROS) production in CKD, which impairs glomerular filtration by a direct cytotoxic effect on the mesangial cells. IS further reduces antioxidant capacity in renal proximal tubular cells and contributes to tubulointerstitial injury. IS-induced ROS formation triggers the switching of vascular smooth muscular cells to the osteoblastic phenotype, which induces cardiovascular risk. Low-turnover bone disease seen in early CKD relies on the inhibitory effects of IS on osteoblast viability and differentiation, and osteoblastic signaling via the parathyroid hormone. Excessive ROS and inflammatory cytokine releases caused by IS directly inhibit myocyte growth in muscle wasting via myokines’ effects. Moreover, IS triggers eryptosis via ROS-mediated oxidative stress, and elevates hepcidin levels in order to prevent iron flux in circulation in renal anemia. Thus, IS-induced oxidative stress underlies the mechanisms in CKD-related complications. This review summarizes the underlying mechanisms of how IS mediates oxidative stress in the pathogenesis of CKD’s complications. Furthermore, we also discuss the potential role of oral AST-120 in attenuating IS-mediated oxidative stress after gastrointestinal adsorption of the IS precursor indole.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 114
Author(s):  
Chih-Yu Yang ◽  
Ting-Wen Chen ◽  
Wan-Lun Lu ◽  
Shih-Shin Liang ◽  
Hsien-Da Huang ◽  
...  

Chronic kidney disease (CKD) has long been known to cause significant digestive tract pathology. Of note, indoxyl sulfate is a gut microbe-derived uremic toxin that accumulates in CKD patients. Nevertheless, the relationship between gut microbiota, fecal indole content, and blood indoxyl sulfate level remains unknown. In our study, we established an adenine-induced CKD rat model, which recapitulates human CKD-related gut dysbiosis. Synbiotic treatment in CKD rats showed a significant reduction in both the indole-producing bacterium Clostridium and fecal indole amount. Furthermore, gut microbiota diversity was reduced in CKD rats but was restored after synbiotic treatment. Intriguingly, in our end-stage kidney disease (ESKD) patients, the abundance of indole-producing bacteria, Bacteroides, Prevotella, and Clostridium, is similar to that of healthy controls. Consistently, the fecal indole tends to be higher in the ESKD patients, but the difference did not achieve statistical significance. However, the blood level of indoxyl sulfate was significantly higher than that of healthy controls, implicating that under an equivalent indole production rate, the impaired renal excretion contributes to the accumulation of this notorious uremic toxin. On the other hand, we did identify two short-chain fatty acid-producing bacteria, Faecalibacterium and Roseburia, were reduced in ESKD patients as compared to the healthy controls. This may contribute to gut dysbiosis. We also identified that three genera Fusobacterium, Shewanella, and Erwinia, in the ESKD patients but not in the healthy controls. Building up gut symbiosis to treat CKD is a novel concept, but once proved effective, it will provide an additional treatment strategy for CKD patients.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Trisha Sachan ◽  
Anita Saxena ◽  
Amit Gupta

Abstract Background and Aims Changes in dietary phosphorus regulate serum FGF-23, parathyroid hormone, 1,25(OH)(2)D and Klotho concentrations . Cardiovascular disease (CVD) is the principal killer of patients with chronic kidney disease and hyperphosphetemia is a potent risk factor it. Of many causative factors for CVD in CKD, dietary interventions involving restriction of dietary phosphorous intake can help reduce onset of CVD at early stages of CKD with other corrective measures. Muscle wasting is a consequence of uremic syndrome which alters body composition. The aim of the study was to study effect of dietary phosphorous restriction on FGF-23, iPTH, Klotho, 1,25(OH)(2)D and body composition in chronic kidney disease patients. Method This is a longitudinal study with 12 months intervention, approved by Ethics Committee of the institute. A total 132 subjects were recruited (66 healthy controls, 66 CKD patient. of 66 patients 33 were in CKD stage 1 and 33 in stage 2. GFR was calculated with the help of MDRD formula. Biochemical parameters of subjects were evaluated at baseline, 6 and 12 months along with the anthropometric measurements (body weight, height, mid upper arm circumference (MUAC), and skin folds). Three days dietary recall was taken to evaluate energy, protein and phosphorous intake. CKD patients whose dietary phosphorous intake was more than 1000 mg/day, were given intense dietary counseling and prescribed dietary modifications by restricting dietary phosphorous between 800-1000 mg/day. Results The mean age of controls and patients was 37.01±9.62 and 38.27±12.06 and eGFR of 136.94±11.77 and 83.69±17.37 respectively. One way ANOVA showed significant difference among controls and the study groups in hemoglobin (p<0.001), s albumin (p<0.001), FGF-23 (p<0.001), klotho (p<0.001), urinary protein (p<0.001) and Nephron Index (p<0.001).The mean energy intake (p = 0.001) and dietary phosphorous intake (p<0.001) of the CKD patients decreased significantly with the decline in the renal function along with the anthropometric measures i.e. BMI (p = 0.041),WHR (p = 0.015) and all four skin folds (p<0.001). On applying Pearson’s correlation, eGFR correlated negatively with urinary protein (-0.739, 0.000), FGF-23 (-0.679, 0.000) and serum phosphorous (-0.697, 0.000) and positively with klotho (0.872, 0.000). FGF-23 correlated negatively with klotho (-0.742, 0.000). Dietary phosphorous was found to be positively correlated with urinary protein (0.496, 0.000), serum phosphorous (0.680, 0.000) and FGF-23 (0.573, 0.000) and negatively with Klotho (-0.602, 0.000). Nephron index revealed a positive correlation with eGFR (0.529, 0.000). Urinary protein correlated negatively with klotho (-0.810, 0.000). A multiple linear regression was run to predict eGFR from anthropometric variables such as BMI, WHR, MUAC, skin folds thickness and handgrip strength. All anthropometric variables predicted decline in eGFR (p<0.05, R2 =0.223). At 6 and 12 months; repeated ANOVAs analysis showed a statistically significant difference in serum creatinine (p=0.000), serum phosphorous (p=0.000), FGF-23(p=0.000) and klotho (p=0.000). Conclusion Elevated levels of FGF-23 and decreased Klotho levels, with the moderate decline in renal function improved with the restricted phosphorous diet at 6 and 12 months emphasizing the importance of phosphorus restriction at an early stage.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Miki Imazu ◽  
Masanori Asakura ◽  
Takuya Hasegawa ◽  
Hiroshi Asanuma ◽  
Shin Ito ◽  
...  

Background: One of uremic toxins, indoxyl sulfate (IS) is related to the progression of chronic kidney disease (CKD) and the worse cardiovascular outcomes. We have previously reported the relationship between IS levels and the severity of chronic heart failure (CHF), but the question arises as to whether the treatment of uremic toxin is beneficial in patients with CHF. This study aimed to elucidate whether the treatment with the oral adsorbent which reduces uremic toxin improved the cardiac function of the patients with CHF. Methods: First of all, we retrospectively enrolled 49 patients with both CHF and stage ≤3 CKD in our institute compared with the healthy subjects without CHF or CKD in the resident cohort study of Arita. Secondly, we retrospectively enrolled 16 CHF outpatients with stage 3-5 CKD. They were treated with and without the oral adsorbent of AST-120 for one year termed as the treatment and control groups, respectively. We underwent both blood test and echocardiography before and after the treatment. Results: First of all, among 49 patients in CHF patients, plasma IS levels increased to 1.38 ± 0.84 μg/ml from the value of 0.08 ± 0.06 μg/ml in Arita-cho as a community-living matched with gender and eGFR of CHF patients. We found both fractional shortening (FS) and E/e’, an index of diastolic function were decreased (25.0 ± 12.7%) and increased (13.7 ± 7.5), respectively in CHF patients compared with the value of FS and E/e’ in Arita-cho (FS: 41.8 ± 8.3%, E/e’: 8.8 ± 2.1). Secondly, in the treatment group, the plasma IS levels and the serum creatinine and brain natriuretic peptide levels decreased (1.40 ± 0.17 to 0.92 ± 0.15 μg/ml; p<0.05, 1.91 ± 0.16 to 1.67 ± 0.12 mg/dl; p<0.05, 352 ± 57 to 244 ± 49 pg/ml; p<0.05, respectively) and both FS and E/e’ were improved following the treatment with AST-120 (28.8 ± 2.8 to 32.9 ± 2.6%; p<0.05, 18.0 ± 2.0 to 11.8 ± 1.0; p<0.05). However, these parameters did not change in the control group. Conclusions: The treatment to decrease the blood levels of uremic toxins improved not only renal dysfunction but cardiac systolic and diastolic dysfunction in patients with chronic heart failure. Oral adsorbents might be a new treatment of heart failure especially with diastolic dysfunction.


2021 ◽  
Vol 22 (19) ◽  
pp. 10549
Author(s):  
Ophélie Fourdinier ◽  
Griet Glorieux ◽  
Benjamin Brigant ◽  
Momar Diouf ◽  
Anneleen Pletinck ◽  
...  

Chronic kidney disease (CKD) is a major cause of death worldwide and is associated with a high risk for cardiovascular and all-cause mortality. In CKD, endothelial dysfunction occurs and uremic toxins accumulate in the blood. miR-126 is a regulator of endothelial dysfunction and its blood level is decreased in CKD patients. In order to obtain a better understanding of the physiopathology of the disease, we correlated the levels of miR-126 with several markers of endothelial dysfunction, as well as the representative uremic toxins, in a large cohort of CKD patients at all stages of the disease. Using a univariate analysis, we found a correlation between eGFR and most markers of endothelial dysfunction markers evaluated in this study. An association of miR-126 with all the evaluated uremic toxins was also found, while uremic toxins were not associated with the internal control, specifically cel-miR-39. The correlation between the expression of endothelial dysfunction biomarker Syndecan-1, free indoxyl sulfate, and total p-cresyl glucuronide on one side, and miR-126 on the other side was confirmed using multivariate analysis. As CKD is associated with reduced endothelial glycocalyx (eGC), our results justify further evaluation of the role of correlated parameters in the pathophysiology of CKD.


Sign in / Sign up

Export Citation Format

Share Document