scholarly journals Epidemiology and contact tracing assessment of COVID-19 and potential risk of transmission at different exposure settings: A prospective cohort study

Author(s):  
Abu Shadat M Noman ◽  
Mohammed Rezaul Karim ◽  
ASM Zahed ◽  
ATM Rezaul Karim ◽  
Syed S Islam

Abstract Background: Transmission risk of coronavirus disease 2019 (COVID-19) to close contacts and at different exposure settings are yet to be fully understood for the evaluation of effective control measures. Methods: We traced 1171 close contact cases who were linked to 291 index cases between July 3, 2020 and September 3, 2020. Clinical and epidemiological characteristics of all index cases, close contacts, and secondary contact cases were collected and analyzed the secondary attack rate and risk of transmission at different exposure settings. Results: Median age of 291 index cases were 43.0 years (range 18.5-82.3) including 213 male and 78 females. Among all 1171 close contact cases, 39(3.3%) cases were identified as secondary infected cases. Among 39 secondary cases, 33(84.62%) cases were symptomatic and 3 (7.69%) cases were asymptomatic. Of the 33 symptomatic cases, 31(86.1%) male and 5(13.9%) female. Of these 36 symptomatic cases, 24(66.7%) cases between age 20-59 and remaining 12(33.3%) cases were age 60 and over. Of the 36 symptomatic cases, 11(30.6%) cases were identified as severe, 19(52.8%) as moderate and 6(16.7%) as mild. The overall secondary clinical attack rate was 3.07% (95% CI 2.49-3.64). The attack rate was higher among those aged between 50 to 69 years and shows higher risk of transmission than age below 50 years. The attack rate was higher among household contact (6.17%(95%CI 4.7-7.6; risk ratio 2.44[95%CI1.5-3.4]), and lower in hospital facility (2.29%,95%CI0.58-3.40; [risk ratio 0.91,95%CI 0.17-1.9]), funeral ceremony (2.53%,95%CI 0.32-4.73), work places (3.95%,95% CI2.5-5.42 [risk ratio 1.56,95%CI 0.63-2.5]), family contacts (3.87%,95%CI 2.4-5.3; risk ratio 1.53,95%CI 0.61-2.45]). Conclusions: Among all exposure settings analyzed, household contact exposure setting remained the highest transmission probability and risk of transmission of COVID-19 with the increase of age and disease severity.

1991 ◽  
Vol 106 (1) ◽  
pp. 133-141 ◽  
Author(s):  
K. A. V. Cartwright ◽  
J. M. Stuart ◽  
P. M. Robinson

SUMMARYBetween 1 October 1986 and 31 March 1987, 55 cases of meningococcal disease were identified in the South-West of England, an attack rate of 1·54 per 100000 during the study period. Antibiotics used in the treatment of the disease successfully eliminated nasopharyngeal carriage of meningococci in 13 out of 14 cases without use of rifampicin. The overall meningococcal carriage rate in 384 close contacts was 18·2% and the carriage rate of strains indistinguishable from the associated case strain was 11·1%. The carriage rate of indistinguishable strains in household contacts (16·0%) was higher than the carriage rate in contacts living at other addresses (7·0%, P > 0·05). A 2·day course of rifampicin successfully eradicated meningococci from 46 (98%) of 47 colonized contacts.In one third of cases groupable meningococci were isolated from at least one household contact; 92% of these isolates were of the same serogroup as the associated case strain. When a meningococcus is not isolated from a deep site in a clinical case of meningococcal disease, culture of serogroup A or C strains from nasopharyngeal swabs of the case or of household contacts is an indication that the close contact group should be offered meningococcal A + C vaccine in addition to chemoprophylaxis. The failure in this and other studies to isolate meningococci from any household contact in the majority of cases may be due either to the relative insensitivity of nasopharyngeal swabbing in detecting meningococcal carriage or to the acquisition of meningococci by most index cases from sources outside the household.


Author(s):  
Ting Wan Tan ◽  
Han Ling Tan ◽  
Man Na Chang ◽  
Wen Shu Lin ◽  
Chih Ming Chang

(1) Background: The implementation of effective control measures in a timely fashion is crucial to control the epidemic outbreak of COVID-19. In this study, we aimed to analyze the control measures implemented during the COVID-19 outbreak, as well as evaluating the responses and outcomes at different phases for epidemic control in Taiwan. (2) Methods: This case study reviewed responses to COVID-19 and the effectiveness of a range of control measures implemented for epidemic control in Taiwan and assessed all laboratory-confirmed cases between 11 January until 20 December 2020, inclusive of these dates. The confirmation of COVID-19 infection was defined as the positive result of a reverse-transcriptase–polymerase-chain-reaction test taken from a nasopharyngeal swab. Test results were reported by the Taiwan Centers for Disease Control. The incidence rate, mortality rate, and testing rate were compiled, and the risk ratio was provided to gain insights into the effectiveness of prevention measures. (3) Results and Discussion: This study presents retrospective data on the COVID-19 incidence rate in Taiwan, combined with the vital preventive control measures, in a timeline of the early stage of the epidemic that occurred in Taiwan. The implementation of multiple strategy control measures and the assistance of technologies to control the COVID-19 epidemic in Taiwan led to a relatively slower trend in the outbreak compared to the neighboring countries. In Taiwan, 766 confirmed patients were included, comprised of 88.1% imported cases and 7.2% local transmission cases, within the studied period. The incidence rate of COVID-19 in Taiwan during the studied period was 32 per million people, with a mortality rate of 0.3 per million people. Our analysis showed a significantly raised incidence risk ratio in the countries of interest in comparison to Taiwan during the study period; in the range of 1.9 to 947.5. The outbreak was brought under control through epidemic policies and hospital strategies implemented by the Taiwan Government. (4) Conclusion: Taiwan’s preventive strategies resulted in a drastically lower risk for Taiwan nationals of contracting COVID-19 when new pharmaceutical drug or vaccines were not yet available. The preventive strategies employed by Taiwan could serve as a guide and reference for future epidemic control strategies.


2020 ◽  
Vol 25 (16) ◽  
Author(s):  
Kin On Kwok ◽  
Valerie Wing Yu Wong ◽  
Wan In Wei ◽  
Samuel Yeung Shan Wong ◽  
Julian Wei-Tze Tang

Background COVID-19, caused by SARS-CoV-2, first appeared in China and subsequently developed into an ongoing epidemic. Understanding epidemiological factors characterising the transmission dynamics of this disease is of fundamental importance. Aims This study aimed to describe key epidemiological parameters of COVID-19 in Hong Kong. Methods We extracted data of confirmed COVID-19 cases and their close contacts from the publicly available information released by the Hong Kong Centre for Health Protection. We used doubly interval censored likelihood to estimate containment delay and serial interval, by fitting gamma, lognormal and Weibull distributions to respective empirical values using Bayesian framework with right truncation. A generalised linear regression model was employed to identify factors associated with containment delay. Secondary attack rate was also estimated. Results The empirical containment delay was 6.39 days; whereas after adjusting for right truncation with the best-fit Weibull distribution, it was 10.4 days (95% CrI: 7.15 to 19.81). Containment delay increased significantly over time. Local source of infection and number of doctor consultations before isolation were associated with longer containment delay. The empirical serial interval was 4.58–6.06 days; whereas the best-fit lognormal distribution to 26 certain-and-probable infector–infectee paired data gave an estimate of 4.77 days (95% CrI: 3.47 to 6.90) with right-truncation. The secondary attack rate among close contacts was 11.7%. Conclusion With a considerable containment delay and short serial interval, contact-tracing effectiveness may not be optimised to halt the transmission with rapid generations replacement. Our study highlights the transmission risk of social interaction and pivotal role of physical distancing in suppressing the epidemic.


2021 ◽  
Vol 26 (31) ◽  
Author(s):  
Brechje de Gier ◽  
Stijn Andeweg ◽  
Rosa Joosten ◽  
Ronald ter Schegget ◽  
Naomi Smorenburg ◽  
...  

Several studies report high effectiveness of COVID-19 vaccines against SARS-CoV-2 infection and severe disease, however an important knowledge gap is the vaccine effectiveness against transmission (VET). We present estimates of the VET to household and other close contacts in the Netherlands, from February to May 2021, using contact monitoring data. The secondary attack rate among household contacts was lower for fully vaccinated than unvaccinated index cases (11% vs 31%), with an adjusted VET of 71% (95% confidence interval: 63–77).


2020 ◽  
Author(s):  
Suling Mao ◽  
Ting Huang ◽  
Heng Yuan ◽  
Min Li ◽  
Xiaomei Huang ◽  
...  

Abstract Background This study was intended to investigate the epidemiological characteristics of COVID-19 clusters and the severity distribution of clinical symptoms of involved cases in Sichuan Province, so as to provide information support for the development and adjustment of strategies for the prevention and control of local clusters.Methods The epidemiological characteristics of 67 local clusters of COVID-19 cases in Sichuan Province reported as of March 17, 2020 were described and analyzed. Information about all COVID-19 clusters and involved cases was acquired from the China Information System for Disease Control and Prevention and analyzed with the epidemiological investigation results taken into account.Results The clusters were temporally and regionally concentrated. Clusters caused by imported cases from Wuhan and other provinces except Wuhan accounted for 73.13%; familial clusters accounted for 68.66%; the average attack rate was 8.54%, and the average secondary attack rate was 6.11%; the median incubation period was 8.5 d;a total of 28 cases met the criteria for incubation period determination, and in the 28 cases, the incubation period was > 14 d in 21.43% (6/28). a total of 226 confirmed cases were reported in the 67 clusters. Ten cases were exposed before the confirmed cases they contacted with developed clinical symptoms, and the possibility of exposure to other infection sources was ruled out; two clusters were caused by asymptomatic carriers; confirmed cases mainly presented with fever, respiratory and systemic symptoms; a gradual decline in the severity of clinical symptoms was noted with the increase of the case generation.Conclusions Population movement and gathering restrictions and strict close contact management measures will significantly contribute to the identification and control of cases. Transmission during the incubation period and asymptomatic infections have been noted. Studies on the pathogenicity and transmissibility in these populations and on COVID-19 antibody levels and protective effects in healthy people and cases are required.


2020 ◽  
Author(s):  
Rachael Pung ◽  
Bernard Lin ◽  
Sebastian Maurer-Stroh ◽  
Fernanda L Sirota ◽  
Tze Minn Mak ◽  
...  

Abstract Starting with a handful of SARS-CoV-2 infections in dormitory residents in late March 2020, rapid tranmission in their dense living environments ensued and by October 2020, more than 50,000 acute infections were identified across various dormitories. Extensive epidemiological, serological and phylogentic investigations, supported by simulation models, helped to reveal the factors of transmission and impact of control measures in a dormitory. We find that asymptomatic cases and symptomatic cases who did not seek medical attention were major drivers of the outbreak. Furthermore, each resident has about 30 close contacts and each infected resident spread to 4.4 (IQR 3.5–5.3) others at the start of the outbreak. The final attack rate of the current outbreak was 76.2% (IQR 70.6%–98.0%) and could be reduced by further 10% under a modified dormitory housing condition. These findings are important when designing living environments in a post COVID-19 future to reduce disease spread and facilitate rapid implementation of outbreak control measures.


2021 ◽  
Vol 9 ◽  
Author(s):  
Kai Yang ◽  
Jiali Deng ◽  
Liang Wang ◽  
Shan Jiang ◽  
Rong Lu ◽  
...  

Introduction: Close contacts have become a potential threat to the spread of coronavirus disease 2019 (COVID-19). The purpose of this study was to understand the epidemiological characteristics of close contacts of confirmed or suspected cases of COVID-19 in the surrounding cities of Chengdu, China, so as to provide a basis for the management strategy of close contacts.Methods: Close contacts were determined through epidemiological investigation of indicated cases, and relevant information was entered in the “Close Contact Information Management System.” Retrospective data of close contacts from January 22 to May 1, 2020 were collected and organized. Meanwhile, the contact mode, isolation mode, and medical outcome of close contacts were descriptively analyzed.Results: A total of 986 close contacts were effectively traced, with an average age of (36.69 ± 16.86) years old, who were mainly distributed in cities of eastern Chengdu. The frequency of contact was mainly occasional contact, 80.42% of them were relatives and public transportation personnel. Besides, the time of tracking close contacts and feedback was (10.64 ± 5.52) and (7.19 ± 6.11) days, respectively. A total of seven close contacts were converted to confirmed cases.Conclusions: Close contacts of COVID-19 have a risk of invisible infection. Early control of close contacts may be helpful to control the epidemic of COVID-19.


2021 ◽  
pp. 004947552110020
Author(s):  
Balram Rathish ◽  
Arun Wilson ◽  
Sonya Joy

COVID-19 has been found to be highly infectious with a high secondary attack rate with a R0 of 3.3. However, the secondary attack rate based on risk stratification is sparsely reported, if ever. We studied the contact tracing data for two index cases of COVID-19 with some overlap of contacts. We found that 60% of high-risk contacts and 0% of low-risk contacts of symptomatic COVID-19 patients contracted the infection, in keeping with the Kerala government contact risk stratification guidelines.


2020 ◽  
Author(s):  
Nathalie CHARLOTTE

Background: There has been little focus on the individual risk of acquiring COVID-19 related to choir practice. Methods: We report the case of a high transmission rate of SARS-CoV-2 linked to an indoor choir rehearsal in France in March 2020 at the beginning of the COVID-19 pandemic. Results: A total of 27 participants, including 25 male singers, a conductor and an accompanist attended a choir practice on March 12, 2020. The practice was indoor and took place in a non-ventilated space of 45 m2. No choir member reported having been symptomatic for COVID-19 between March 2 and March 12.The mean age of the participants was 66.9 (range 35-86) years. 70% of the participants (19 of 27) were diagnosed with COVID-19 from 1 to 12 days after the rehearsal with a median of 5.1 days. 36% of the cases needed a hospitalization (7/19), and 21% (4/19) were admitted to an ICU. The index cases were possibly multiple. Discussion: The choir practice was planned in March 2020 at a period when the number of new cases of COVID-19 began to grow exponentially in France because SARS-CoV-2 was actively circulating. The secondary attack rate (70%) was much higher than it is described within households (10-20%) and among close contacts made outside households (0-5%). Singing might have contributed to enhance SARS-CoV-2 person-to-person transmission through emission of droplets and aerosolization in a closed non ventilated space with a relative high number of people including multiple pre-symptomatic suspected index cases. Conclusion: Indoor choir practice should be suspended during SARS-CoV-2 outbreaks. Further studies are necessary to test the spread of the virus by the act of singing. As the benefits of the barrier measures and social distancing are known to be effective in terms of a reduction in the incidence of the COVID-19, experts recommendations concerning the resuming of choir practice are necessary.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Hongdan Bao ◽  
Kui Liu ◽  
Zikang Wu ◽  
Xiaomeng Wang ◽  
Chengliang Chai ◽  
...  

Abstract Background In recent years, tuberculosis outbreaks in schools have occurred more frequently in China than in other parts of the world, and have posed a public health threat to students and their families. This systematic review aimed to understand the epidemiological characteristics of tuberculosis (TB) outbreaks and analyze the factors associated with TB outbreaks in schools in China. Methods We conducted this systematic review following the standard procedures of the Cochrane Collaboration and the Preferred Reporting Items for Systematic Review and Meta-Analysis statement. The meta-analysis was performed with STATA using a random effects model. Results We included 107 studies involving 1795 student patients with TB in mainland China. The results of the systematic analysis indicated that TB outbreaks were more frequently reported in senior middle schools and in Eastern China. The outbreaks mainly occurred during the winter and spring, and the median outbreak duration was 4 months. The meta-analysis showed that the total attack rate and the class attack rate of tuberculosis outbreaks among students were 4.60% (95% CI 3.80 to 5.70%) and 22.70% (95% CI 19.20 to 27.00%), respectively. Subgroup analysis showed that outbreaks that occurred at universities or colleges had a relatively higher attack rate than those occurred in senior middle schools. The prevalence of latent tuberculosis infection (LTBI) among close contacts was 23.70% (95% CI 19.50 to 28.90%). The median case-finding interval was 2 months, and 47.40% of the index cases had a case-finding delay. Conclusion The results of our review indicated that school TB outbreaks were reported most frequently in senior middle schools in China. The attack rates of outbreaks at universities or colleges were higher than those in senior middle schools. The TB outbreaks in schools usually occurred over prolonged periods. The case-finding delay in the index cases must be reduced to prevent transmission in classes and schools. Effective surveillance and screening of presumptive TB cases in schools should be strengthened to reduce outbreaks in schools.


Sign in / Sign up

Export Citation Format

Share Document