scholarly journals Research on Active Compounds of Huanglian Jiedu Decoction for the Treatment of Corona Virus Disease 2019 Based on Network Pharmacology and Molecular Docking

2020 ◽  
Author(s):  
Leping Liu ◽  
Xinyi Xu ◽  
Xueshuai Cao ◽  
Xi Long ◽  
Yanwei Luo ◽  
...  

Abstract Background Huanglian Jiedu Decoction (HLJDD) is a traditional Chinese prescription for the treatment of influenza, inflammation and other ailments related to heat-syndrome, a typical pathological symptom in Traditional Chinese Medicine. It was recommended as one of the basic prescriptions among the Proposed Diagnoses and Treatment issued by China’s National Health Commission. In this work we investigated the molecular mechanism of action of Huanglian Jiedu Decoction in the treatment of Corona Virus Disease 2019 (COVID-19) through network pharmacology and molecular docking approaches. Methods The chemical constituents and action targets of Coptis chinensis, Scutellaria baicalensis, Phellodendron amurense, Gardenia jasminoides in HLJDD were retrieved on Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). The database of UniProt and GeneCards were used to query the target genes that corresponding to the active compounds, and then a compound-target network was constructed using Cytoscape 3.7.2. GO database was used to annotate GO functions. Reactome was used to analyze KEGG enrichment pathway, predicting the possible mechanisms of active compounds. DAVID database was used to analysis the tissue enrichment. The main active ingredient is molecularly docked with the SARS-CoV-2, ACE2 and TMPRSS2. Results We screened 84 compounds and obtained 341 corresponding target genes in the network. Gene annotation showed that the targets were involved mainly in 457 biological functions. 306 signaling pathways was enriched, involving chemokine and cytokine signaling pathways that mediate inflammation, interferon-γ signaling pathway, p53 pathway. And the targets mainly distributed in the lung liver and placenta, involving a variety of immune cells, such as T cells, B cells. The molecular docking results showed that core compounds such as beta-sitosterol, stigmasterol and quercetin had high affinity with SARS-CoV-2, ACE2 and TMPRSS2, which was comparable with drugs like abidol used to COVID-19 treatment by. Conclusions The active compounds in HLJDD may have a therapeutic effect on COVID-19 through regulating multiple signal pathways by targeting genes such as VEGF, NOS2, IL6, MMP9, IL10, and TGFB1.

PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0252508
Author(s):  
Jingyun Jin ◽  
Bin Chen ◽  
Xiangyang Zhan ◽  
Zhiyi Zhou ◽  
Hui Liu ◽  
...  

Background and objective We aimed to predict the targets and signal pathways of Xiao-Chai-Hu-Tang (XCHT) in the treatment of colorectal cancer (CRC) based on network pharmacology, just as well as to further analyze its anti-CRC material basis and mechanism of action. Methods We adopted Traditional Chinese Medicine Systems Pharmacology Database (TCMSP) and Traditional Chinese Medicine Integrated Database (TCMID) databases to screen the active ingredients and potential targets of XCHT. CRC-related targets were retrieved by analyzing published microarray data (accession number GSE110224) from the Gene Expression Omnibus (GEO) database. The common targets were used to construct the “herb-active ingredient-target” network using the Cytoscape 3.8.0 software. Next, we constructed and analyzed protein-to-protein interaction (PPI) using BisoGenet and CytoNCA plug-in in Cytoscape. We then performed Gene Ontology (GO) functional and the Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway enrichment analyses of target genes using the R package of clusterProfiler. Furthermore, we used the AutoDock Tools software to conduct molecular docking studies on the active ingredients and key targets to verify the network pharmacological analysis results. Results We identified a total of 71 active XCHT ingredients and 20 potential anti-CRC targets. The network analysis revealed quercetin, stigmasterol, kaempferol, baicalein, and acacetin as potential key compounds, and PTGS2, NR3C2, CA2, and MMP1 as potential key targets. The active ingredients of XCHT interacted with most CRC disease targets. We showed that XCHT’s therapeutic effect was attributed to its synergistic action (multi-compound, multi-target, and multi-pathway). Our GO enrichment analysis showed 46 GO entries, including 20 biological processes, 6 cellular components, and 20 molecular functions. We identified 11 KEGG signaling pathways, including the IL-17, TNF, Toll-like receptor, and NF-kappa B signaling pathways. Our results showed that XCHT could play a role in CRC treatment by regulating different signaling pathways. The molecular docking experiment confirmed the correlation between five core compounds (quercetin, stigmasterol, kaempferol, baicalein, and acacetin) just as well as PTGS2, NR3C2, CA2, and MMP1. Conclusion In this study, we described the potential active ingredients, possible targets, and key biological pathways responsible for the efficacy of XCHT in CRC treatment, providing a theoretical basis for further research.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Jiayan Wu ◽  
Shengkun Hong ◽  
Xiankuan Xie ◽  
Wangmi Liu

Objective. Dipsaci Radix (DR) has been used to treat fracture and osteoporosis. Recent reports have shown that myeloid cells from bone marrow can promote the proliferation of lung cancer. However, the action and mechanism of DR has not been well defined in lung cancer. The aim of the present study was to define molecular mechanisms of DR as a potential therapeutic approach to treat lung cancer. Methods. Active compounds of DR with oral bioavailability ≥30% and drug-likeness index ≥0.18 were obtained from the traditional Chinese medicine systems pharmacology database and analysis platform. The potential target genes of the active compounds and bone were identified by PharmMapper and GeneCards, respectively. The compound-target network and protein-protein interaction network were built by Cytoscape software and Search Tool for the Retrieval of Interacting Genes webserver, respectively. GO analysis and pathway enrichment analysis were performed using R software. Results. Our study demonstrated that DR had 6 active compounds, including gentisin, sitosterol, Sylvestroside III, 3,5-Di-O-caffeoylquinic acid, cauloside A, and japonine. There were 254 target genes related to these active compounds as well as to bone. SRC, AKT1, and GRB2 were the top 3 hub genes. Metabolisms and signaling pathways associated with these hub genes were significantly enriched. Conclusions. This study indicated that DR could exhibit the anti-lung cancer effect by affecting multiple targets and multiple pathways. It reflects the traditional Chinese medicine characterized by multicomponents and multitargets. DR could be considered as a candidate for clinical anticancer therapy by regulating bone physiological functions.


2020 ◽  
Author(s):  
Li Chen ◽  
Hua Qu ◽  
Yu Tan ◽  
Tao Han Wu ◽  
Zhuo Da Shi

Abstract Background The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 or COVID-19) disease has led to a wide-spread global pandemic. There is no specific antiviral drug proven effective for the treatment of patients with COVID-19 at present. Combination of western and traditional Chinese medicine (TCM) is recommended, and Lian Hua Qing Wen (LHQW) capsule is a basic prescription and widely used to treat COVID-19 in China. However, the mechanisms of LHQW capsule treating COVID-19 are not clear. The aim of the study is to explore the mechanisms of LHQW capsule treating COVID-19 based on network pharmacy and molecular docking approach. Methods The active compounds and targets of LHQW capsule were obtained from traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP). COVID-19 related target genes were obtained from GeneCards database and OMIM database. Protein–protein interaction (PPI) networks of LHQW capsule targets and COVID-19-related genes were visualized and merged to identify the candidate targets for LHQW capsule treating COVID-19. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were also performed. The hub genes involved in the gene-related pathways were screened and their corresponding compounds were used for in vitro validation of molecular docking predictions.Results A total of 185 active compounds of LHQW capsule were screened out, and 263 targets were predicted. Third hundred and fifty-two COVID-19 related target genes were obtained from GeneCards database and OMIM database. GO functional enrichment analysis showed that the biological processes of LHQW capsule treating COVID-19 were closely linked with the regulation of inflammation, immunity, cytokines production, vascular permeability, oxidative stress and apoptosis. KEGG enrichment analysis revealed that the pathways of LHQW capsule treating COVID-19 were significantly enriched in AGE−RAGE signaling pathway in diabetic complications, Kaposi sarcoma−associated herpesvirus infection, TNF, IL−17, and Toll−like receptor (TLR) signaling pathway. The hub targets genes in the gene-related pathways analysis of LHQW capsule treating COVID-19 included MAPK1, MAPK3, RELA, IL-6 and CASP8, which closely associated with inflammation, cytokines storm and apoptosis. Finally, molecular docking showed that top 5 compounds of LHQW capsule also had good binding activities to the important targets in COVID-19.Conclusions The mechanisms of LHQW capsule treating COVID-19 may involve in inhibiting inflammatory response, cytokine storm and virus infection, and regulating immune reactions, apoptosis and endothelial barrier.


2021 ◽  
Author(s):  
Wangmi Liu ◽  
Jiayan Wu

Abstract Background Memory impairment continues to be a major health problem and increases with age, especially in the elderly population worldwide. However, a causal mechanism has not been clearly identified. Currently, an interaction between bone and brain, the so-called “bone-brain crosstalk,” has emerged. We used a network pharmacology approach to explore the potential mechanisms of Drynariae Rhizoma (DR), a traditional Chinese medicine for fracture treatment, for therapeutic intervention of human conditions associated with memory impairment. Methods The Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform was used to screen out the active compounds of DR, and the targets of the active compounds were predicted using PharmMapper. Targets related to memory impairment were downloaded from the DisGeNET database. The compound-target network and protein-protein interaction network were built by NetworkAnalyst and Cytoscape software. Gene ontology analysis and Reactome pathway enrichment analysis were performed using NetworkAnalyst. SYBYL-X software was used to perform molecular docking simulation. Results Our study demonstrated that DR had 7 active compounds. There were 60 target genes related to these active compounds as well as to memory impairment. Signalling by nerve growth factor was among the top 3 enriched Reactome terms. Akt1 was an important signalling hub gene belonging to signalling by nerve growth factor pathway. Molecular docking results showed that the one of the active compounds, xanthogalenol, exhibited acceptable affinities to Akt1. Conclusion This study demonstrated the molecular mechanism that DR may alleviate memory impairment via regulation of Akt1 and signalling by nerve growth factor pathway. These results offer new ideas in searching for novel strategies for the treatment of memory impairment.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Yingyin Chen ◽  
Xinyi Chai ◽  
Ying Zhao ◽  
Xinqian Yang ◽  
Caiting Zhong ◽  
...  

Background. Zishen Yutai Pills (ZSYTP) is a prescription based on traditional Chinese medicine used to treat kidney-deficient pattern in traditional Chinese medicine. It is also widely used clinically for the treatment of polycystic ovary syndrome (PCOS) with positive results. This study aims to explore the potential pharmacological mechanism of ZSYTP for the treatment of PCOS by a network pharmacology approach. Methods. Compounds were collected from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform and Bioinformatics Analysis Tool for Molecular mechanism of Traditional Chinese Medicine and TCM Database@ Taiwan, and the corresponding targets were retrieved from PubChem, Swiss Target Prediction, STITCH, and DrugBank. Meanwhile, PCOS targets were retrieved from the GeneCards database, the Online Mendelian Inheritance in Man database, National Center for Biotechnology Information Database, and DrugBank. Subsequently, multiple network construction and gene enrichment analyses were conducted with Cytoscape 3.8.2 software. Based on the previous results in the study, molecular docking simulations were done. Results. 205 active compounds and 478 ZSYTP target genes were obtained after screening by ADME consideration. 1881 disease-related targets were obtained after removing duplicates. 148 intersection target genes between drug and disease targets were isolated. Gene ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes analysis highlighted multiple gene functions and different signaling pathways to treat PCOS. Further molecular docking demonstrated the practicality of in vivo action of ZSYTP to a certain extent. Conclusions. It is possible that the pharmacological effect of ZSYTP on PCOS is linked to the hypoxia-inducible factor 1 (HIF-1) signaling pathway, improving insulin resistance, the variation on gene expression such as RNA splicing, and regulation of mRNA metabolic process. This study paves the way for further research investigating its mechanisms.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Yin Qu ◽  
Zhijun Zhang ◽  
Yafeng Lu ◽  
De Zheng ◽  
Yang Wei

Background. The healing process of the surgical wound of anal fistulotomy is much slower because of the presence of stool within the wound. Cuyuxunxi (CYXX) prescription is a Chinese herbal fumigant that is being used to wash surgical wound after anal fistulotomy. This study aimed at investigating the molecular mechanism of CYXX prescription using a network pharmacology-based strategy. Materials and Methods. The active compounds in each herbal medicine were retrieved from the traditional Chinese medicine systems pharmacology (TCMSP) database and in Traditional Chinese Medicine Integrated Database (TCMID) analysis platform based on the criteria of oral bioavailability ≥40% and drug-likeness ≥0.2. The disease-related target genes were extracted from the Comparative Toxicogenomics Database. Protein-protein interaction network was built for the overlapped genes as well as functional enrichment analysis. Finally, an ingredient-target genes-pathway network was built by integrating all information. Results. A total of 375 chemical ingredients of the 5 main herbal medicines in CYXX prescription were retrieved from TCMSP database and TCMID. Among the 375 chemical ingredients, 59 were active compounds. Besides, 325 target genes for 16 active compounds in 3 herbal medicines were obtained. Functional enrichment analysis revealed that these overlapped genes were significantly related with immune response, biosynthesis of antibiotics, and complement and coagulation cascades. A comprehensive network which contains 133 nodes (8 disease nodes, 3 drug nodes, 8 ingredients, 103 target gene nodes, 7 GO nodes, and 4 pathway nodes) was built. Conclusion. The network built in this study might aid in understanding the action mechanism of CYXX prescription at molecular level to pathway level.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Ying Qu ◽  
Xiangyang Yang ◽  
Jingxiang Li ◽  
Shuxin Zhang ◽  
Shiying Li ◽  
...  

Objective. This study aimed to investigate the possible mechanism of the Zhishi and Baizhu herb pair in the treatment of gastric cancer by means of network pharmacology and molecular docking and to provide a theoretical basis for experiments and clinical application of traditional Chinese medicine for treating gastric cancer. Methods. The main active chemical components of Zhishi and Baizhu were screened through Traditional Chinese Medicine Systems Pharmacology (TCMSP) database and selected by using the thresholds of oral bioavailability ≥30% and drug-likeness ≥18%. The targets of Zhishi and Baizhu were obtained from TCMSP, Therapeutic Targets Database (TTD), and the DrugBank database. The corresponding genes of the targets were retrieved from the UniProt database, and the gastric cancer targets were obtained from the GeneCards database and TTD. Subsequently, the networks were built between the main drug components, drug targets, and gastric cancer targets. Then, the enrichment analyses of GO and KEGG were applied to predict the potential roles of gastric cancer pathogenesis via the R package clusterProfiler. Finally, molecular docking was used to determine the affinity between the targets and components. Results. Twenty-seven main active components were predicted from the Zhishi-Baizhu herb pair, and a total of 120 intersection genes were screened from 303 potential medicine genes and 1,839 disease genes. The enrichment included the PI3K-Akt and IL-17 signaling pathways, and the network analysis showed that the Zhishi-Baizhu herb pair acted on seven key targets, namely, AKT1, MMP9, IL-6, CCND1, BCL2, MTOR, and MDM2 (where they played a role in treating gastric cancer). Molecular docking showed that luteolin and naringenin could stably bind to the targets. Conclusion. The possible mechanisms of the components of the Zhishi-Baizhu herb pair in treating gastric cancer might be related to luteolin and naringenin, which intervened with the targets AKT1, MMP9, IL-6, CCND1, BCL2, MTOR, and MDM2, and are linked with the PI3K-Akt and IL-17 signaling pathways. This knowledge will lay a solid foundation for further experimental and clinical studies.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Fanyu Fu ◽  
Zeqing Huang ◽  
Hengli Ye ◽  
Biao Tan ◽  
Rongtian Wang ◽  
...  

The Tao-Hong-Si-Wu-Tang (THSWT) formula, a classic prescription of traditional Chinese medicine, has long been used for the treatment of osteonecrosis of femoral head (ONFH). However, its mechanisms of action and molecular targets are not comprehensively clear. In the present study, the Traditional Chinese Medicine System Pharmacology (TCMSP) database was employed to retrieve the active compounds of each herb included in the THSWT formula. After identifying the drug targets of active compounds and disease targets of ONFH, intersection analysis was conducted to screen out the shared targets. The protein-protein network of the shared targets was built for further topological analysis. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis were then carried out. A gene pathway network was constructed to screen the core target genes. We identified 61 active compounds, 155 drug targets, and 5443 disease targets. However, intersection analysis only screened out 37 shared targets. Kaempferol, luteolin, and baicalein regulated the greatest number of targets associated with ONFH. The THSWT formula may regulate osteocyte function through specific biological processes, including responses to toxic substances and oxidative stress. The regulated pathways included the relaxin, focal adhesion, nuclear factor-κB, toll-like receptor, and AGE/RAGE signaling pathways. RELA, VEGFA, and STAT1 were the important target genes in the gene network associated with the THSWT formula for the treatment of ONFH. Therefore, the present study suggested that the THSWT formula has an action mechanism involving multiple compounds and network targets for the treatment of ONFH.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Shuyue Wang ◽  
Fei Guo ◽  
Xiaochen Sun ◽  
Xiao Song ◽  
Yaohui Yuan ◽  
...  

Background. Hypertensive vascular remodeling (HVR) is the pathophysiological basis of hypertension, which is also an important cause of vascular disease and target organ damage. Treatment with Fructus Tribuli (FT), a traditional Chinese medicine, has a positive effect on HVR. However, the pharmacological mechanisms of FT are still unclear. Therefore, this study aimed to reveal the potential mechanisms involved in the effects of FT on HVR based on network pharmacology and molecular docking. Materials and Methods. We selected the active compounds and targets of FT according to the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and the Swiss Target Prediction database, and the targets of HVR were collected from the Online Mendelian Inheritance in Man (OMIM), GeneCards, and DrugBank databases. The protein-protein interaction network (PPI) was established using the STRING database. Moreover, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses and network analysis were performed to further explore the potential mechanisms. Finally, molecular docking methods were used to evaluate the affinity between the active compounds and the main target. Results. Seventeen active compounds of FT  and 164 potential targets for the treatment of HVR were identified. Component-target and PPI networks were constructed, and 12 main active components and 33 main targets were identified by analyzing the topological parameters. Additionally, GO analysis indicated that the potential targets were enriched in 483 biological processes, 52 cellular components, and 110 molecular functions. KEGG analysis revealed that the potential targets were correlated with 122 pathways, such as the HIF-1 signaling pathway, ErbB signaling pathway, and VEGF signaling pathway. Finally, molecular docking showed that the 12 main active components had a good affinity for the top five main targets. Conclusion. This study demonstrated the multiple compounds, targets, and pathway characteristics of FT in the treatment of HVR. The network pharmacology method provided a novel research approach to analyze potential mechanisms.


2021 ◽  
Vol 41 (2) ◽  
Author(s):  
Zhenjie Zhuang ◽  
Tong Lin ◽  
Lixia Luo ◽  
Weixin Zhou ◽  
Junmao Wen ◽  
...  

Abstract Background. Aidi injection (ADI) is an effective Traditional Chinese medicine preparation widely used for lung cancer. However, the pharmacological mechanisms of ADI on lung cancer remain to be elucidated. Methods. A network pharmacology (NP)-based approach and the molecular docking validation were conducted to explore underlying mechanisms of ADI on lung cancer. The compounds and target genes were screened by Traditional Chinese Medicine Systems Pharmacology (TCMSP) database and Bioinformatics Analysis Tool for Molecular mechANism of Traditional Chinese Medicine (Batman-TCM) database. The STRING database was utilized for protein interaction network construction. The R package clusterProfiler was used for bioinformatics annotation of hub target genes. The gene expression analysis and survival analysis were performed based on The Cancer Genome Atlas (TCGA) database. The Autodock Vina was used for molecular docking validation. Results. A total of five key compounds with 324 putative target genes were screened out, and 14 hub target genes were identified for treating lung cancer. Six hub genes could influence the survival of non-small cell lung cancer (NSCLC) patients. Of these hub genes, the expression pattern of EGFR, MYC, PIK3CA, and SMAD3 were significantly higher in the LUSC, while PIK3CA and RELA expressed lower in the LUAD group and LUSC group, respectively. These six hub genes had good docking affinity with the key compounds of ADI. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that ADI may exert therapeutic effects on lung cancer by regulating critical pathways including the thyroid hormone signaling pathway, MAPK signaling pathway, and PI3K-Akt signaling pathway. Conclusions. The present study explored the potential pharmacological mechanisms of ADI on lung cancer, promoting the clinical application of ADI in treating lung cancer, and providing references for advanced researches.


Sign in / Sign up

Export Citation Format

Share Document