scholarly journals Exploring the mechanism of aidi injection for lung cancer by network pharmacology approach and molecular docking validation

2021 ◽  
Vol 41 (2) ◽  
Author(s):  
Zhenjie Zhuang ◽  
Tong Lin ◽  
Lixia Luo ◽  
Weixin Zhou ◽  
Junmao Wen ◽  
...  

Abstract Background. Aidi injection (ADI) is an effective Traditional Chinese medicine preparation widely used for lung cancer. However, the pharmacological mechanisms of ADI on lung cancer remain to be elucidated. Methods. A network pharmacology (NP)-based approach and the molecular docking validation were conducted to explore underlying mechanisms of ADI on lung cancer. The compounds and target genes were screened by Traditional Chinese Medicine Systems Pharmacology (TCMSP) database and Bioinformatics Analysis Tool for Molecular mechANism of Traditional Chinese Medicine (Batman-TCM) database. The STRING database was utilized for protein interaction network construction. The R package clusterProfiler was used for bioinformatics annotation of hub target genes. The gene expression analysis and survival analysis were performed based on The Cancer Genome Atlas (TCGA) database. The Autodock Vina was used for molecular docking validation. Results. A total of five key compounds with 324 putative target genes were screened out, and 14 hub target genes were identified for treating lung cancer. Six hub genes could influence the survival of non-small cell lung cancer (NSCLC) patients. Of these hub genes, the expression pattern of EGFR, MYC, PIK3CA, and SMAD3 were significantly higher in the LUSC, while PIK3CA and RELA expressed lower in the LUAD group and LUSC group, respectively. These six hub genes had good docking affinity with the key compounds of ADI. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that ADI may exert therapeutic effects on lung cancer by regulating critical pathways including the thyroid hormone signaling pathway, MAPK signaling pathway, and PI3K-Akt signaling pathway. Conclusions. The present study explored the potential pharmacological mechanisms of ADI on lung cancer, promoting the clinical application of ADI in treating lung cancer, and providing references for advanced researches.

2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Jiayan Wu ◽  
Shengkun Hong ◽  
Xiankuan Xie ◽  
Wangmi Liu

Objective. Dipsaci Radix (DR) has been used to treat fracture and osteoporosis. Recent reports have shown that myeloid cells from bone marrow can promote the proliferation of lung cancer. However, the action and mechanism of DR has not been well defined in lung cancer. The aim of the present study was to define molecular mechanisms of DR as a potential therapeutic approach to treat lung cancer. Methods. Active compounds of DR with oral bioavailability ≥30% and drug-likeness index ≥0.18 were obtained from the traditional Chinese medicine systems pharmacology database and analysis platform. The potential target genes of the active compounds and bone were identified by PharmMapper and GeneCards, respectively. The compound-target network and protein-protein interaction network were built by Cytoscape software and Search Tool for the Retrieval of Interacting Genes webserver, respectively. GO analysis and pathway enrichment analysis were performed using R software. Results. Our study demonstrated that DR had 6 active compounds, including gentisin, sitosterol, Sylvestroside III, 3,5-Di-O-caffeoylquinic acid, cauloside A, and japonine. There were 254 target genes related to these active compounds as well as to bone. SRC, AKT1, and GRB2 were the top 3 hub genes. Metabolisms and signaling pathways associated with these hub genes were significantly enriched. Conclusions. This study indicated that DR could exhibit the anti-lung cancer effect by affecting multiple targets and multiple pathways. It reflects the traditional Chinese medicine characterized by multicomponents and multitargets. DR could be considered as a candidate for clinical anticancer therapy by regulating bone physiological functions.


2021 ◽  
Author(s):  
Daqiu Chen ◽  
Yanqing Wu ◽  
Yixing Chen ◽  
Qiaoxing Chen ◽  
Xianhua Ye ◽  
...  

Background: Suxiao Xintong dropping pills (SXXTDP), a traditional Chinese medicine, is widely applied for treating myocardial infarction (MI). However, its therapy mechanisms are still unclear. Therefore, this research is designed to explore the molecular mechanisms of SXXTDP in treating MI. Methods: The active ingredients of SXXTDP and their corresponding genes of the active ingredients were retrieved from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. MI-related genes were identified via analyzing the expression profiling data (accession number: GSE97320). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed to study the shared genes of drug and disease. Through protein-protein interaction (PPI) network and the Cytoscape plugin cytoHubba, the hub genes were screened out. The compounds and hub targets binding were simulated through molecular docking method. Results: We obtained 21 active compounds and 253 corresponding target genes from TCMSP database. 1833 MI-related genes were identified according to P<0.05 and |log2FC| ≥ 0.5. 27 overlapping genes between drug and disease were acquired. GO analysis indicated that overlapping genes were mainly enriched in MAP kinase activity and antioxidant activity. KEGG analysis indicated that overlapping genes were mainly enriched in IL-17 signaling pathway and TNF signaling pathway. We obtained 10 hub genes via cytoHubba plugin. Six of the 10 hub genes, including PTGS2, MAPK14, MMP9, MAPK1, NFKBIA, and CASP8, were acted on molecular docking verification with their corresponding compounds of SXXTDP. Conclusion: SXXTDP may exert cardioprotection effect through regulating multiple targets and multiple pathways in MI.


2022 ◽  
Vol 2022 ◽  
pp. 1-20
Author(s):  
Hao Lv ◽  
Jiuxiang Wang ◽  
Yujun Zhu ◽  
Ting Jiang

Background. This study used a combination of network pharmacology and experimental confirmation to clarify the mechanism of the compound kidney-invigorating granule (CKG) in treating osteoporosis (OP). Methods. The main bioactive compounds and corresponding targets of CKG were collected and screened via the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), Yet another Traditional Chinese Medicine (YaTCM), and UniProt databases. Disease targets of OP were summarized in GeneCards and the Comparative Toxicogenomics Database (CTD). Targets of CKG for OP were obtained by Venn diagram. The protein-protein interaction (PPI) network was constructed by the STRING database and then screened for hub genes through Cytoscape 3.7.2 software. The Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment were analyzed and visualized by R software. Then, CB-Dock was used for molecular docking verification. Finally, we confirmed the antiosteoporosis effect of CKG through animal and cell experiments. Results. A total of 250 putative targets were obtained from 65 bioactive compounds in CKG. Among them, 140 targets were related to OP. Topological analysis of the PPI network yielded 23 hub genes. Enrichment analysis showed the targets of CKG in treating OP might concentrate on the MAPK signaling pathway, the TNF signaling pathway, the PI3K-Akt signaling pathway, etc. The results of molecular docking showed the bioactive components in CKG had good binding ability with the key targets. The experimental results showed that CKG-medicated serum had a promoting effect on proliferating hBMSCs, increasing the expression of AKT, PI3K, ERK1, and IkB in cells and decreasing the expression of IKK in cells. Conclusion. CKG has a complex of multicomponent, multitarget, and multipathway. This study lays the theoretical foundation for further in vitro and in vivo experimental studies and further expands the clinical applications of CKG.


2021 ◽  
Author(s):  
Dianna Liu ◽  
Shicheng Lin ◽  
Yuan Li ◽  
Tian Zhou ◽  
Kaiwen Hu ◽  
...  

Abstract BackgroundLung adenocarcinoma (LUAD) is one of the most common malignancies with a rise in new cases worldwide each year. Recurrence significantly influences the survival in patients with LUAD. Yin-Huo-Tang (YHT) is a classic traditional Chinese prescription, used to prevent lung cancer relapse by “nourishing yin and clearing heat”. MethodsIn this study, the mechanism of YHT in LUAD recurrence was investigated. Firstly, the bioactive compounds-targets network and the protein–protein interaction network were constructed, and functional annotation and pathway enrichment analyses were performed. Pivotal compounds and hub genes were selected from the networks. Subsequently, the effectiveness of YHT was confirmed in lewis lung carcinoma mice. RNA sequencing was used to explore the mRNA expression differences between tumor tissues in the model mouses and YHT-treated mouses. The pathways screened by network pharmacology and RNA sequencing analysis at the same time were considered the most important pathways. At last, qualitative phytochemical analysis, molecular docking technology, PCR and WB analysis were used to validate the pivotal active ingredients, hub genes and main pathways.ResultsThere were 128 active compounds, 419 targets interacting with LUAD recurrence. Network analysis identified 4 pivotal compounds, 28 hub genes and 30 main pathways. Target genes mainly focused on inflammation, metabolism, immune responses and apoptosis. We confirmed that YHT could inhibit the recurrence of lung adenocarcinoma through animal experimental study. Sphingolipid signaling pathway was the common main pathway in network pharmacology and RNA sequencing results. The hub genes related with the sphingolipid signaling pathway was S1PR5. Qualitative phytochemical analysis of the water extract of YHT confirmed the presence of 3 pivotal compounds, namely stigmasterol, nootkatone and ergotamine. The results of molecular docking verified the pivotal compounds of YHT could good affinity with the S1PR5. The PCR and WB analysis verified YHT suppressed lewis lung cancer cells proliferation by inhibiting S1P/S1PR5/Gi/Ras/Raf/MEK/ERK pathway, and inhibited migration through S1P/S1PR5/Gi/PI3K/RAC pathway.ConclusionThe results confirmed the therapeutic effect of YHT on the recurrence of LUAD by multi-component-multi-target mode, the sphingolipid signaling pathway was one of the most relevant potential signaling pathways.


2021 ◽  
Author(s):  
Xue Bai ◽  
Yibo Tang ◽  
Qiang Li ◽  
Guimin Liu ◽  
Dan Liu ◽  
...  

Abstract Background: Male infertility (MI) affects almost 5% adult men worldwide, and 75% of these cases are unexplained idiopathic. There are limitations in the current treatment due to the unclear mechanism of MI, which highlight the urgent need for a more effective strategy or drug. Traditional Chinese Medicine (TCM) prescriptions have been used to treat MI for thousands of years, but their molecular mechanism is not well defined. Methods: Aiming at revealing the molecular mechanism of TCM prescriptions on MI, a comprehensive strategy integrating data mining, network pharmacology, and molecular docking verification was performed. Firstly, we collected 289 TCM prescriptions for treating MI from National Institute of TCM Constitution and Preventive Medicine for 6 years. Then, Core Chinese Materia Medica (CCMM), the crucial combination of TCM prescriptions, was obtained by the TCM Inheritance Support System from China Academy of Chinese Medical Sciences. Next, the components and targets of CCMM in TCM prescriptions and MI-related targets were collected and analyzed through network pharmacology approach.Results: The results showed that the molecular mechanism of TCM prescriptions for treating MI are regulating hormone, inhibiting apoptosis, oxidant stress and inflammatory. Estrogen signaling pathway, PI3K-Akt signaling pathway, HIF-1 signaling pathway, and TNF signaling pathway are the most important signaling pathways. Molecular docking experiments were used to further validate network pharmacology results. Conclusions: This study not only discovers CCMM and the molecular mechanism of TCM prescriptions for treating MI, but may be helpful for the popularization and application of TCM treatment.


2020 ◽  
Author(s):  
Li Chen ◽  
Hua Qu ◽  
Yu Tan ◽  
Tao Han Wu ◽  
Zhuo Da Shi

Abstract Background The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 or COVID-19) disease has led to a wide-spread global pandemic. There is no specific antiviral drug proven effective for the treatment of patients with COVID-19 at present. Combination of western and traditional Chinese medicine (TCM) is recommended, and Lian Hua Qing Wen (LHQW) capsule is a basic prescription and widely used to treat COVID-19 in China. However, the mechanisms of LHQW capsule treating COVID-19 are not clear. The aim of the study is to explore the mechanisms of LHQW capsule treating COVID-19 based on network pharmacy and molecular docking approach. Methods The active compounds and targets of LHQW capsule were obtained from traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP). COVID-19 related target genes were obtained from GeneCards database and OMIM database. Protein–protein interaction (PPI) networks of LHQW capsule targets and COVID-19-related genes were visualized and merged to identify the candidate targets for LHQW capsule treating COVID-19. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were also performed. The hub genes involved in the gene-related pathways were screened and their corresponding compounds were used for in vitro validation of molecular docking predictions.Results A total of 185 active compounds of LHQW capsule were screened out, and 263 targets were predicted. Third hundred and fifty-two COVID-19 related target genes were obtained from GeneCards database and OMIM database. GO functional enrichment analysis showed that the biological processes of LHQW capsule treating COVID-19 were closely linked with the regulation of inflammation, immunity, cytokines production, vascular permeability, oxidative stress and apoptosis. KEGG enrichment analysis revealed that the pathways of LHQW capsule treating COVID-19 were significantly enriched in AGE−RAGE signaling pathway in diabetic complications, Kaposi sarcoma−associated herpesvirus infection, TNF, IL−17, and Toll−like receptor (TLR) signaling pathway. The hub targets genes in the gene-related pathways analysis of LHQW capsule treating COVID-19 included MAPK1, MAPK3, RELA, IL-6 and CASP8, which closely associated with inflammation, cytokines storm and apoptosis. Finally, molecular docking showed that top 5 compounds of LHQW capsule also had good binding activities to the important targets in COVID-19.Conclusions The mechanisms of LHQW capsule treating COVID-19 may involve in inhibiting inflammatory response, cytokine storm and virus infection, and regulating immune reactions, apoptosis and endothelial barrier.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yingyin Zhu ◽  
Wanling Zhong ◽  
Jing Peng ◽  
Huichao Wu ◽  
Shouying Du

Purpose: The external preparation of the Tibetan medicine formula, Baimai ointment (BMO), has great therapeutic effects on osteoarthritis (OA). However, its molecular mechanism remains almost elusive. Here, a comprehensive strategy combining network pharmacology and molecular docking with pharmacological experiments was adopted to reveal the molecular mechanism of BMO against OA.Methods: The traditional Chinese medicine for systems pharmacology (TCMSP) database and analysis platform, traditional Chinese medicine integrated database (TCMID), GeneCards database, and DisGeNET database were used to screen the active components and targets of BMO in treating OA. A component–target (C-T) network was built with the help of Cytoscape, and the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment through STRING. Autodock Tools which was used to dock the key components and key target proteins was analyzed. Animal experiments were performed to verify the key targets of BMO. Hematoxylin–eosin and toluidine blue staining were used to observe the pathology of joints. Protein expression was determined using enzyme-linked immunosorbent assay.Results: Bioactive compounds and targets of BMO and OA were screened. The network analysis revealed that 17-β-estradiol, curcumin, licochalone A, quercetin, and glycyrrhizic acid were the candidate key components, and IL6, tumor necrosis factor (TNF), MAPK1, VEGFA, CXCL8, and IL1B were the candidate key targets in treating OA. The KEGG indicated that the TNF signaling pathway, NF-κB signaling pathway, and HIF-1 signaling pathway were the potential pathways. Molecular docking implied a strong combination between key components and key targets. The pathology and animal experiments showed BMO had great effects on OA via regulating IL6, TNF, MAPK1, VEGFA, CXCL8, and IL1B targets. These findings were consistent with the results obtained from the network pharmacology approach.Conclusion: This study preliminarily illustrated the candidate key components, key targets, and potential pathways of BMO against OA. It also provided a promising method to study the Tibetan medicine formula or external preparations.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Yingyin Chen ◽  
Xinyi Chai ◽  
Ying Zhao ◽  
Xinqian Yang ◽  
Caiting Zhong ◽  
...  

Background. Zishen Yutai Pills (ZSYTP) is a prescription based on traditional Chinese medicine used to treat kidney-deficient pattern in traditional Chinese medicine. It is also widely used clinically for the treatment of polycystic ovary syndrome (PCOS) with positive results. This study aims to explore the potential pharmacological mechanism of ZSYTP for the treatment of PCOS by a network pharmacology approach. Methods. Compounds were collected from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform and Bioinformatics Analysis Tool for Molecular mechanism of Traditional Chinese Medicine and TCM Database@ Taiwan, and the corresponding targets were retrieved from PubChem, Swiss Target Prediction, STITCH, and DrugBank. Meanwhile, PCOS targets were retrieved from the GeneCards database, the Online Mendelian Inheritance in Man database, National Center for Biotechnology Information Database, and DrugBank. Subsequently, multiple network construction and gene enrichment analyses were conducted with Cytoscape 3.8.2 software. Based on the previous results in the study, molecular docking simulations were done. Results. 205 active compounds and 478 ZSYTP target genes were obtained after screening by ADME consideration. 1881 disease-related targets were obtained after removing duplicates. 148 intersection target genes between drug and disease targets were isolated. Gene ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes analysis highlighted multiple gene functions and different signaling pathways to treat PCOS. Further molecular docking demonstrated the practicality of in vivo action of ZSYTP to a certain extent. Conclusions. It is possible that the pharmacological effect of ZSYTP on PCOS is linked to the hypoxia-inducible factor 1 (HIF-1) signaling pathway, improving insulin resistance, the variation on gene expression such as RNA splicing, and regulation of mRNA metabolic process. This study paves the way for further research investigating its mechanisms.


2021 ◽  
Author(s):  
Biting Wang ◽  
Zengrui Wu ◽  
Weihua Li ◽  
Guixia Liu ◽  
Yun Tang

Abstract Background: The traditional Chinese medicine Huangqi decoction (HQD) consists of Radix Astragali and Radix Glycyrrhizae in a ratio of 6 : 1, which has been used for the treatment of liver fibrosis. In this study, we tried to elucidate its action of mechanism (MoA) via a combination of metabolomics data, network pharmacology and molecular docking methods. Methods: Firstly, we collected prototype components and metabolic products after administration of HQD from a publication. With known and predicted targets, compound-target interactions were obtained. Then, the global compound-liver fibrosis target bipartite network and the HQD-liver fibrosis protein-protein interaction network were constructed, separately. KEGG pathway analysis was applied to further understand the mechanisms related to the target proteins of HQD. Additionally, molecular docking simulation was performed to determine the binding efficiency of compounds with targets. Finally, after taking concentration of prototype compounds and metabolites of HQD after administration into consideration, the critical compound-liver fibrosis target bipartite network was constructed.Results: We collected 68 components, including 17 prototype components and 51 metabolic products after administration of HQD, and 540 compound-target interactions were obtained between the 68 components and 95 targets. Combining network analysis and molecular docking, as well as concentration of prototype compounds and metabolites of HQD, our final results demonstrated that eight compounds (three prototype compounds and five metabolites) and eight targets (CDK1, MMP9, PPARD, PPARG, PTGS2, SERPINE1, TP53, and HIF1A) might contribute to the effects of HQD on liver fibrosis by reducing fibrogenesis and stimulate degradation, which through p53 signaling pathway, PPAR signaling pathway, HIF-1 signaling pathway, IL-17 signaling pathway, and TNF signaling pathway.Conclusions: Our results would shed light on the complicated MoA of traditional Chinese medicine and help to attract attention to the therapeutic effects of metabolites of original components in Chinese herbs through computational methods.


2020 ◽  
Author(s):  
Zhihong Huang ◽  
Siyu Guo ◽  
Changgeng Fu ◽  
Wei Zhou ◽  
Jingyuan Zhang ◽  
...  

Abstract Background: Xintong Granule (XTG) is a Chinese patent medicine composed of 13 Chinese herbs, which is widely used in the treatment of coronary heart disease (CHD). However, there are few studies on it, and its potential pharmacological mechanism needs to be further elucidated.Methods: In this study, network pharmacology was employed to construct the drug-compounds-targets-pathways molecular regulatory network of the treatment of CHD to explore the effective compounds of XTG and its underlying pharmacological mechanism. First, we established the related ingredients and potential targets of these ingredients databases by Traditional Chinese Medicine Systems Pharmacology Database (TCMSP) and A Bioinformatics Analysis Tool for Molecular mechANism of Traditional Chinese Medicine (BATMAN-TCM). Next, the CHD targets were obtained in DigSee, OMIM, DisGeNET, TTD, GeneCards and GenCLiP3 database. Then, protein-protein interaction (PPI) analysis, GO and KEGG pathway enrichment analysis were carried out and the core targets were filtered by topology. Moreover, molecular docking was performed to assess the binding potential of hub targets and key compounds.Results: The result reflected that 178 components of XTG and 669 putative therapeutic targets were screened out. After a systematic and comprehensive analysis, we identified 9 hub targets (TNF, MAPK1, STAT3, IL6, AKT1, INS, EGFR, EGF, TP53) primarily participated in the comprehensive therapeutic effect related to blood circulation, vascular regulation, cell membrane region, compound binding, receptor activity, signal transduction, AGE-RAGE signaling pathway in diabetic complications, JAK-STAT signaling pathway, PI3K-AKT signaling pathway and MAPK signaling pathway.Conclusion: The results of this study tentatively clarified the potential targets and signaling pathways of XTG against CHD, which may benefit to the development of clinical experimental research and application.


Sign in / Sign up

Export Citation Format

Share Document