scholarly journals Simultaneous CK2/TNIK/Dyrk1 inhibition by 108600 suppresses triple negative breast cancer stem cells and chemotherapy-resistant disease

2020 ◽  
Author(s):  
Katsutoshi Sato ◽  
Amol Padgaonkar ◽  
Stacey Baker ◽  
Stephen Cosenza ◽  
Olga Rechkoblit ◽  
...  

Abstract Triple negative breast cancer (TNBC) remains clinically challenging as patients have heterogeneous responses to current standard of care therapies. Chemotherapy sensitivity is a strong predictor of long-term outcomes for patients, and incomplete response of early stage disease to chemotherapy treatment is associated with a much higher risk of disease relapse and metastatic progression, often occurring within a short time from initial diagnosis. Therefore, treatment strategies that target chemotherapy-resistant TNBC and/or enhance chemosensitivity would improve outcomes for these high-risk patients. Breast cancer stem cell-like cells (BCSC) have been proposed to represent a chemotherapy-resistant subpopulation within the tumor which are also responsible for tumor initiation, progression and metastases. Targeting this population could lead to improved TNBC disease control. We have identified a novel multi-kinase inhibitor 108600 from a screen for inhibitors of this TNBC BCSC population. 108600 treatment suppresses growth, colony and mammosphere forming capacity of the BCSC population. Treatment with 108600 induces G2M arrest and eventual apoptosis of TNBC cells in vitro and of TNBC xenografts in vivo, and overcomes chemotherapy (paclitaxel) resistance of triple negative patient-derived xenografts (PDX). Finally, treatment with 108600 and chemotherapy suppressed the growth of already established TNBC metastases, providing additional support for the clinical translation of this agent to clinical trials.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Katsutoshi Sato ◽  
Amol A. Padgaonkar ◽  
Stacey J. Baker ◽  
Stephen C. Cosenza ◽  
Olga Rechkoblit ◽  
...  

AbstractTriple negative breast cancer (TNBC) remains challenging because of heterogeneous responses to chemotherapy. Incomplete response is associated with a greater risk of metastatic progression. Therefore, treatments that target chemotherapy-resistant TNBC and enhance chemosensitivity would improve outcomes for these high-risk patients. Breast cancer stem cell-like cells (BCSCs) have been proposed to represent a chemotherapy-resistant subpopulation responsible for tumor initiation, progression and metastases. Targeting this population could lead to improved TNBC disease control. Here, we describe a novel multi-kinase inhibitor, 108600, that targets the TNBC BCSC population. 108600 treatment suppresses growth, colony and mammosphere forming capacity of BCSCs and induces G2M arrest and apoptosis of TNBC cells. In vivo, 108600 treatment of mice bearing triple negative tumors results in the induction of apoptosis and overcomes chemotherapy resistance. Finally, treatment with 108600 and chemotherapy suppresses growth of pre-established TNBC metastases, providing additional support for the clinical translation of this agent to clinical trials.



2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e13096-e13096
Author(s):  
Elias Eteshola ◽  
Karenia Landa ◽  
Eun-Sil Shelley Hwang ◽  
Smita Nair ◽  
Bruce Sullenger

e13096 Background: Breast cancers remain the most lethal malignancies amongst women worldwide and the second leading cause of cancer-related mortalities in the US. Subtype heterogeneity and aggressive invasive potential are believed to be the major contributors of these outcomes. Triple-negative breast cancer (TNBC) are notoriously aggressive, difficult-to-treat, and metastatic. Inflammation-driven tumorigenesis has been shown to correlate with cell-free DNA (cfDNA) and other damage-associated molecular patterns (DAMPs) in cancer patient sera. We showed that nucleic-acid scavengers (NAS) can block pro-inflammatory signals elicited by DAMP-activation of innate immune sensors (e.g. toll-like receptors). Treatment with the NAS PAMAM-G3 drastically reduced liver metastatic burden in an immunocompetent murine model of pancreatic cancer. Methods: TNBC cells lines were treated with a cocktail of standard-of-care chemotherapeutic agents and the conditioned media (CM) from these cells served as an in vitro DAMP source. Downstream function of TLR activation was tested via a HEK293-TLR reporter cell line measuring absorbance at 655nm. The in vitro invasive phenotype was tested and quantified using a Transwell-Matrigel invasion assay. Cytokine secretion was measured using a BioLegend cytokine array. Results: TNBC CM greatly increased TNBC cell invasion in vitro and that treatment with the NAS PAMAM-G3 significantly inhibits this effect. Treatment of human monocytes (THP-1) with TNBC CM elicited a strong pro-inflammatory response with elevated levels of IL-8, IL-6, CCL2, and IL-1β. Other biologically immune responders including human PBMCs will be tested to determine the potential impact on the tumor immune microenvironment during tumorigenesis and treatment. Conclusions: To elucidate the mechanism by which this NAS works in these tumor settings, our lab has developed several PAMAM-G3 derivatives, including biotin, IR-, and near-IR fluorophore labeled molecules. These molecules will allow us to capture and characterize DAMPs and do in vivo live imaging experiments to gain insight into NAS PK/PD properties. This insight into NAS capabilities will enhance our understanding of metastatic progression and its interplay with the immune system. Moreover, these principles will aid in the development of novel of anti-metastatic therapies to improve TNBC patient outcomes.



Biomedicines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1580
Author(s):  
Sami U. Khan ◽  
Ying Xia ◽  
David Goodale ◽  
Gabriella Schoettle ◽  
Alison L. Allan

The lung is one of the deadliest sites of breast cancer metastasis, particularly for triple negative breast cancer (TNBC). We have previously shown that the lung produces several soluble factors that may enhance the metastatic behavior of TNBC, including E-, L-, and P-selectin. In this paper, we hypothesize that lung-derived selectins promote TNBC metastatic behavior and may serve as a potential therapeutic target. Lungs were isolated from mice and used to generate lung-conditioned media (CM). Lung-derived selectins were immunodepleted and TNBC migration and proliferation were assessed in response to native or selectin-depleted lung-CM. A 3D ex vivo pulmonary metastasis assay (PuMA) was used to assess the metastatic progression of TNBC in the lungs of wild-type versus triple-selectin (ELP-/-) knockout mice. We observed that individual lung-derived selectins enhance in vitro migration (p ≤ 0.05), but not the proliferation of TNBC cells, and that ex vivo metastatic progression is reduced in the lungs of ELP-/- mice compared to wild-type mice (p ≤ 0.05). Treatment with the pan-selectin inhibitor bimosiamose reduced in vitro lung-specific TNBC migration and proliferation (p ≤ 0.05). Taken together, these results suggest that lung-derived selectins may present a potential therapeutic target against TNBC metastasis. Future studies are aimed at elucidating the pro-metastatic mechanisms of lung-derived selectins and developing a lung-directed therapeutic approach.



2020 ◽  
Vol 3 (7) ◽  
pp. e201900562 ◽  
Author(s):  
Alaknanda Adwal ◽  
Priyakshi Kalita-de Croft ◽  
Reshma Shakya ◽  
Malcolm Lim ◽  
Emarene Kalaw ◽  
...  

In vitro studies have suggested proteasome inhibitors could be effective in triple-negative breast cancer (TNBC). We found that bortezomib and carfilzomib induce proteotoxic stress and apoptosis via the unfolded protein response (UPR) in TNBC cell lines, with sensitivity correlated with expression of immuno-(PSMB8/9/10) but not constitutive-(PSMB5/6/7) proteasome subunits. Equally, the transcriptomes of i-proteasome–high human TNBCs are enriched with UPR gene sets, and the genomic copy number landscape reflects positive selection pressure favoring i-proteasome activity, but in the setting of adjuvant treatment, this is actually associated with favorable prognosis. Tumor expression of PSMB8 protein (β5i) is associated with levels of MHC-I, interferon-γ–inducible proteasome activator PA28β, and the densities of stromal antigen-presenting cells and lymphocytes (TILs). Crucially, TILs were protective among TNBCs that maintain high β5i but did not stratify survival amongst β5i-low TNBCs. Moreover, β5i expression was lower in brain metastases than in patient-matched primary breast tumors (n = 34; P = 0.007), suggesting that suppression contributes to immune evasion and metastatic progression. Hence, inhibiting proteasome activity could be counterproductive in the adjuvant treatment setting because it potentiates anti-TNBC immunity.



ESMO Open ◽  
2018 ◽  
Vol 3 (Suppl 1) ◽  
pp. e000357 ◽  
Author(s):  
Ji Hyun Park ◽  
Jin-Hee Ahn ◽  
Sung-Bae Kim

Triple-negative breast cancer (TNBC) is a long-lasting orphan disease in terms of little therapeutic progress during the past several decades and still the standard of care remains chemotherapy. Experimental discovery of molecular signatures including the ‘BRCAness’ highlighted the innate heterogeneity of TNBC, generating the diversity of TNBC phenotypes. As it contributes to enhancing genomic instability, it has widened the therapeutic spectrum of TNBC. In particular, unusual sensitivity to DNA damaging agents was denoted in patients with BRCA deficiency, suggesting therapeutic benefit from platinum and poly(ADP-ribose) polymerase inhibitors. However, regardless of enriched chemosensitivity and immunogenicity, majority of patients with TNBC still suffer from dismal clinical outcomes including early relapse and metastatic spread. Therefore, efforts into more precise and personalised treatment are critical at this point. Accordingly, the advance of multiomics has revealed novel actionable targets including PI3K-Akt-mTOR and epidermal growth factor receptor signalling pathways, which might actively participate in modulating the chemosensitivity and immune system. Also, TNBC has long been considered a potential protagonist of immunotherapy in breast cancer, supported by abundant tumour-infiltrating lymphocytes and heterogeneous tumour microenvironment. Despite that, earlier studies showed somewhat unsatisfactory results of monotherapy with immune-checkpoint inhibitors, consistently durable responses in responders were noteworthy. Based on these results, further combinatorial trials either with other chemotherapy or targeted agents are underway. Incorporating immune-molecular targets into combination as well as refining the standard chemotherapy might be the key to unlock the future of TNBC. In this review, we share the current and upcoming treatment options of TNBC in the framework of scientific and clinical data, especially focusing on early stage of TNBC.



Author(s):  
Janice García-Quiroz ◽  
Nohemí Cárdenas-Ochoa ◽  
Rocío García-Becerra ◽  
Gabriela Morales-Guadarrama ◽  
Edgar A. Méndez-Pérez ◽  
...  

Chemotherapy is a standard therapeutic option for triple-negative breast cancer (TNBC); however, its effectiveness is often compromised by drug-related toxicity and resistance development. Herein, we aimed to evaluate whether an improved antineoplastic effect could be achieved in vitro and in vivo in TNBC by combining dovitinib, a multi-kinase inhibitor, with calcitriol, a natural anti-cancer hormone. In vitro, cell proliferation and cell-cycle distribution were studied by sulforhodamine B-assays and flow cytometry. In vivo, dovitinib/calcitriol effects on tumor growth, angiogenesis and endothelium activation were evaluated in xenografted mice by caliper measures, Itgb3-immunohistochemistry and 99mTc-RGD2-tumor uptake. The drug combination elicited a synergistically improved antiproliferative effect in TNBC-derived cells, which allowed a 7-fold dovitinib dose-reduction. Mechanistically, the co-treatment induced cell death and accumulation in S and G2/M phases, while inhibited tumor growth to a greater extent than each compound alone. Tumor uptake of 99mTc-RGD2 was reduced by dovitinib, suggesting angiogenesis inhibition, which was corroborated by decreased endothelial cell growth and tumor vessel density. In summary, calcitriol synergized dovitinib anticancer effects in vitro and in vivo, allowing for a significant dose-reduction of dovitinib, while maintaining its antiproliferative potency. Our results suggest the beneficial convergence of independent antitumor mechanisms of dovitinib and calcitriol to inhibit TNBC-tumor growth.



2018 ◽  
Author(s):  
Dong-Mei Chen ◽  
Zhu-Qing Shi ◽  
Li-Li Tan ◽  
Yan-Ping Chen ◽  
Chang-Qing Li ◽  
...  

AbstractBackgroundThe origin of breast cancer remains poorly understood. Here, we testify a putative mechanism of “breast cancer origin from inducible nitric oxide synthase (iNOS) activation and oestrogen receptor alpha (ERα) inactivation”, which are classified as the essential outcomes of chronic inflammatory responses.MethodsTo reverse breast cancer status, iNOS was downregulated by short-hairpin RNA (shRNA)-guidedNOS2knockdown from human triple-negative breast cancer (TNBC) cells. To re-enact breast cancer origin, ERα was downregulated by shRNA-directedESR1knockdown in human mammary epithelial cells.ResultsUponNOS2knockdown from HCC1937 cells, the specific TNBC transcription factor genes,RUNX1andBCL11A, were downregulated, hypoxia was compromised, Warburg effects were attenuated, and tumourigenic proliferation was halted, accompanied by an increase in the tumour marker cyclin D1 (CD1) and a decrease in the tumour suppressor cyclin-dependent kinase inhibitor (CKI). In contrast,ESR1knockdown from MCF-10A cells led to upregulatedBCL11AandRUNX1expression, augmented hypoxic responses, pronounced Warburg effects, and enhanced PI3K/Akt/mTOR signalling, together with low levels of CD1 and high levels of CKI induction.ConclusionsBreast cancer should originate from inflammatory signalling, during which iNOS activation and ERα inactivation elicit hypoxia, oxidation, mitochondrial dysfunction, and breast cancer-like hyperplasia, demonstrating that iNOS inhibitors and ERα activators represent promising candidate prodrugs enabling breast cancer prevention in the early stage.



2021 ◽  
Vol 22 (11) ◽  
pp. 5782
Author(s):  
Ashwini Makhale ◽  
Devathri Nanayakkara ◽  
Prahlad Raninga ◽  
Kum Kum Khanna ◽  
Murugan Kalimutho

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer lacking targeted therapy. Here, we evaluated the anti-cancer activity of APR-246, a P53 activator, and CX-5461, a RNA polymerase I inhibitor, in the treatment of TNBC cells. We tested the efficacy of individual and combination therapy of CX-5461 and APR-246 in vitro, using a panel of breast cancer cell lines. Using publicly available breast cancer datasets, we found that components of RNA Pol I are predominately upregulated in basal-like breast cancer, compared to other subtypes, and this upregulation is associated with poor overall and relapse-free survival. Notably, we found that the treatment of breast cancer cells lines with CX-5461 significantly hampered cell proliferation and synergistically enhanced the efficacy of APR-246. The combination treatment significantly induced apoptosis that is associated with cleaved PARP and Caspase 3 along with Annexin V positivity. Likewise, we also found that combination treatment significantly induced DNA damage and replication stress in these cells. Our data provide a novel combination strategy by utilizing APR-246 in combination CX-5461 in killing TNBC cells that can be further developed into more effective therapy in TNBC therapeutic armamentarium.



2021 ◽  
Vol 9 (7) ◽  
pp. e002383
Author(s):  
Jin-Li Wei ◽  
Si-Yu Wu ◽  
Yun-Song Yang ◽  
Yi Xiao ◽  
Xi Jin ◽  
...  

PurposeRegulatory T cells (Tregs) heavily infiltrate triple-negative breast cancer (TNBC), and their accumulation is affected by the metabolic reprogramming in cancer cells. In the present study, we sought to identify cancer cell-intrinsic metabolic modulators correlating with Tregs infiltration in TNBC.Experimental designUsing the RNA-sequencing data from our institute (n=360) and the Molecular Taxonomy of Breast Cancer International Consortium TNBC cohort (n=320), we calculated the abundance of Tregs in each sample and evaluated the correlation between gene expression levels and Tregs infiltration. Then, in vivo and in vitro experiments were performed to verify the correlation and explore the underlying mechanism.ResultsWe revealed that GTP cyclohydrolase 1 (GCH1) expression was positively correlated with Tregs infiltration and high GCH1 expression was associated with reduced overall survival in TNBC. In vivo and in vitro experiments showed that GCH1 increased Tregs infiltration, decreased apoptosis, and elevated the programmed cell death-1 (PD-1)-positive fraction. Metabolomics analysis indicated that GCH1 overexpression reprogrammed tryptophan metabolism, resulting in L-5-hydroxytryptophan (5-HTP) accumulation in the cytoplasm accompanied by kynurenine accumulation and tryptophan reduction in the supernatant. Subsequently, aryl hydrocarbon receptor, activated by 5-HTP, bound to the promoter of indoleamine 2,3-dioxygenase 1 (IDO1) and thus enhanced the transcription of IDO1. Furthermore, the inhibition of GCH1 by 2,4-diamino-6-hydroxypyrimidine (DAHP) decreased IDO1 expression, attenuated tumor growth, and enhanced the tumor response to PD-1 blockade immunotherapy.ConclusionsTumor-cell-intrinsic GCH1 induced immunosuppression through metabolic reprogramming and IDO1 upregulation in TNBC. Inhibition of GCH1 by DAHP serves as a potential immunometabolic strategy in TNBC.



Sign in / Sign up

Export Citation Format

Share Document