scholarly journals Large Antenna Array with Hybrid Beamforming System for 5G Indoor Communication Network Deployments

Author(s):  
Jeyakumar P ◽  
Malar E ◽  
Srinitha S ◽  
Muthuchidambaranathan P ◽  
Arvind Ramesh Ramesh

Abstract The millimeter-wave multiple input multiple output (MIMO) technology is the frontier for 5G communication systems. This work contributes a large antenna array with a limited number of radio frequency chains using the hybrid beamforming (HBF) technique that overcomes extreme path loss in the mmWave system to improve spectral efficiency. The link budget analysis is given for the target data rate of 11.3 Gbps for the point-to-point communication. The number of antenna elements required for the proposed antenna array is determined via link budget analysis. The proposed system includes single element patch antenna configuration, array factor analysis, and beam steering capability. The transmit and receive antenna gain specifications minimize the path loss and improve the system throughput. Combiners and hybrid precoders are designed together in an iterative way for reducing the cost function of the weighted minimum mean squared(WMMSE) error. Simulation results demonstrate that the proposed HBF algorithm performance is highly effective and performs closer to the fully digital beamforming technique. The proposed large antenna array with HBF uses the New York University Simulator (NYUSIM) to perform omnidirectional and directional power delay profile analysis with the most potent power. The proposed large antenna array with HBF methodology provides an optimal approach to indoor point-to-point communication deployments.

Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 673
Author(s):  
Mian Kamal ◽  
Shouyi Yang ◽  
Saad Kiani ◽  
Daniyal Sehrai ◽  
Mohammad Alibakhshikenari ◽  
...  

To address atmospheric attenuation and path loss issues in the mmwave portion of the spectrum, high gain and narrow beam antenna systems are essential for the next generation communication networks. This paper presents a novel hook-shaped antenna array for 28 GHz 5G mmwave applications. The proposed antenna was fabricated on commercially available Rogers 5880 substrate with thickness of 0.508 mm and dimensions of 10 × 8 mm2. The proposed shape consists of a circle with an arc-shaped slot on top of it and T-shaped resonating lengths are introduced in order to attain broad band characteristics having gain of 3.59 dBi with radiation and total efficiency of 92% and 86% for single element. The proposed structure is transformed into a four-element array with total size of 26.9 × 18.5 mm2 in order to increase the gain up to 10.3 dBi at desired frequency of interest. The four-element array is designed such that it exhibits dual-beam response over the entire band of interest and the simulated results agree with fabricated prototype measurements. The proposed antenna array, because of its robustness, high gain, and dual-beam characteristics can be considered as a potential candidate for the next generation 5G communication systems.


2020 ◽  
Author(s):  
SAFWAN ALFATTANI ◽  
Wael Jaafar ◽  
Yassine Hmamouche ◽  
Halim Yanikomeroglu ◽  
Abbas Yongacoglu

In this paper, we derive the link budget relations for<br>communications assisted by reconfigurable smart surfaces (RSS).<br>Specifically, under specular and scattering paradigms, we provide<br>link budget expressions for an RSS-assisted communication on<br>the ground, where the RSS is either mounted on a building, or on<br>an aerial platform, such as an unmanned aerial vehicle (UAV),<br>a high altitude platform station (HAPS), or a low-earth orbit<br>satellite (LEO). The obtained numerical results provide design<br>guidelines for RSS-assisted communication systems, including the<br>recommended aerial platform to use, the size of RSS for each<br>type of the platforms, and the operating frequencies. <br>


2020 ◽  
Vol 10 (13) ◽  
pp. 4546
Author(s):  
Tarek S. Mneesy ◽  
Radwa K. Hamad ◽  
Amira I. Zaki ◽  
Wael A. E. Ali

This paper presented the design and implementation of a 60 GHz single element monopole antenna as well as a two-element array made of two 60 GHz monopole antennas. The proposed antenna array was used for 5G applications with radiation characteristics that conformed to the requirements of wireless communication systems. The proposed single element was designed and optimized to work at 60 GHz with a bandwidth of 6.6 GHz (57.2–63.8 GHz) and a maximum gain of 11.6 dB. The design was optimized by double T-shaped structures that were added in the rectangular slots, as well as two external stubs in order to achieve a highly directed radiation pattern. Moreover, ring and circular slots were made in the partial ground plane at an optimized distance as a defected ground structure (DGS) to improve the impedance bandwidth in the desired band. The two-element array was fed by a feed network, thus improving both the impedance bandwidth and gain. The single element and array were fabricated, and the measured and simulated results mimicked each other in both return loss and antenna gain.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
G. Federico ◽  
D. Caratelli ◽  
G. Theis ◽  
A. B. Smolders

With the introduction of 5G communication systems operating in the mm-wave frequency range, new opportunities in terms of multimedia services and applications will become available. For this to happen, several technical challenges from an antenna standpoint need to be addressed. The achievements of high-gain characteristics and agile beamforming with wide-scan capabilities are the main targets of the ongoing research on mm-wave antenna arrays. In this paper, an up-to-date overview of antenna array technology for wireless communications at mm-wave frequencies is given. Particular focus is put on the review of the state-of-the art and most advanced antenna array concepts for point-to-point and point-to-multipoint radio links at said frequencies. Various figures of merit are assessed for a comprehensive analysis and bench marking of the technical solutions investigated in the presented survey.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Junhyuk Yoo ◽  
Wonjin Sung ◽  
In-Kyung Kim

Millimeter-wave (mmWave) communication is a key technology of 5G new radio (NR) mobile communication systems. Efficient beamforming using a large antenna array is important to cope with the significant path loss experienced in the mmWave spectrum. The existing fully digital beamforming scheme requires a separate radio frequency (RF) chain for each antenna, which results in an excessive hardware cost and consumption power. Under these circumstances, hybrid beamforming which approaches the performance of fully digital beamforming while reducing the complexity is a promising solution for the mmWave multiuser transmission. By extending the existing hybrid beamforming strategies, this paper proposes a novel architecture which effectively reduces the hardware cost and complexity for large antenna arrays. The proposed scheme includes multiple subarrays in the form of uniform planar array (UPA) which are allowed to be overlapped in the two-dimensional space. The corresponding antenna structure is referred to as the two-dimensional overlapped partially connected (2D-OPC) subarray structure. We evaluate the performance of the proposed scheme to suggest performance-complexity trade-offs in designing versatile antenna arrays for efficient beamforming over the mmWave channel.


2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Shaddrack Yaw Nusenu

With the massive growth of wireless data in mobile broadband communications, millimeter-wave (mm-wave) communication is an alternative enabling technique for fifth generation (5G) wireless communication systems. More importantly, mm-wave offers large frequency spectrum bands ranging from 30GHz to 300GHz that can be utilized to provide very high capacity (i.e., multigigabits per-second data rates). Moreover, because of the small wavelength at mm-wave frequencies, we can exploit large antenna elements in a small physical area, meaning beamforming schemes are feasible. Nevertheless, high directional antennas should be used due to overcoming the severe path loss and absorption in mm-wave frequencies. Further, the antennas should be steerable in angle and range directions to support point-to-point (multipoint) communications. So far, mm-wave communication has utilized phased-array antennas arrangement which is solely angle dependent. This review paper presents recent array technology, namely, frequency modulated frequency diverse array (FDA) for mm-wave communication applications with an emphasis on beamforming. In FDA, small frequency increment is added across the elements. In doing so, an array beam is generated which is angle-range-time dependent without the need of phase shifters. This feature has several promising potentials in mm-wave communications. In this review, the object is to bring to the fore this advance FDA technology to mm-wave communications community to call for more investigations. We review FDA research progress up to date and highlight the potential applications in mm-wave communications.


2021 ◽  
Author(s):  
SAFWAN ALFATTANI ◽  
Wael Jaafar ◽  
Yassine Hmamouche ◽  
Halim Yanikomeroglu ◽  
Abbas Yongacoglu

<div>Non-terrestrial networks, including Unmanned Aerial Vehicles (UAVs), High Altitude Platform Station (HAPS) and Low Earth Orbiting (LEO) satellites, are expected to have a pivotal role in the sixth generation wireless networks. With their inherent features such as flexible placement, wide footprint, and preferred channel conditions, they can tackle several challenges in current terrestrial networks. However, their successful and widespread adoption relies on energy-efficient on-board communication systems. In this context, the integration of Reconfigurable Smart Surfaces (RSS) into aerial platforms is envisioned as a key enabler of energy-efficient and cost-effective deployments of aerial platforms. Indeed, RSS consist of low-cost reflectors capable of smartly directing signals in a nearly passive way. We investigate in this paper the link budget of RSS-assisted communications under the two discussed RSS reflection paradigms in the literature, namely the specular and the scattering reflection paradigm types. Specifically, we analyze the characteristics of RSS-equipped aerial platforms and compare their communication performance with that of RSS-assisted terrestrial networks, using standardized channel models. In addition, we derive the optimal aerial platforms placements under both reflection paradigms. The obtained results provide important insights for the design of RSS-assisted communications. For instance, given that a HAPS has a large RSS surface, it provides superior link budget performance in most studied scenarios. In contrast, the limited RSS area on UAVs and the large propagation loss in LEO satellite communications make them unfavorable candidates for supporting terrestrial users. Finally, the optimal location of the RSS-equipped platform may depend on the platform’s altitude, coverage footprint, and type of environment.</div>


Sign in / Sign up

Export Citation Format

Share Document