Compartmentalization Rather Than Host Tree Drives Truffle Microbiome

2020 ◽  
Author(s):  
Dong Liu ◽  
Jesus Perez-Moreno ◽  
Xinhua He ◽  
Roberto Garibay-Orijel ◽  
Fuqiang Yu

Abstract Background: Truffles are some of the among the most expensive edible fungi worldwide whose value in international markets is worth billions of US dollars annually. They form ectomycorrhiza which is a symbiotic relationship with host trees and produce hypogeous ascomata. Their whole life-cycle is closely related to their associated microbiome. However, whether truffle-associated compartments or host trees are drivers for truffle microbiome is unclear.Methods: To identify and compare bacterial and fungal communities in four truffle-associated compartments (Tuber indicum bulk soil, adhering soil to peridium, peridium and gleba), associated to three host trees we sequenced their ITS (fungal) and 16S (bacterial) rDNA with Illumina MiSeq high throughput platform. We further applied the amplicon data to analyze the core microbiome and microbial ecological networks. Results: Tuber indicum microbiome composition was strongly driven by their associated compartments rather than by their symbiotic host trees. Truffle microbiome was bacterial-dominated, and its bacterial community formed a substantially more complex interacting network compared with that of fungal community. Core fungal community changed from Basidiomycota-dominated (in bulk soil) to Rozellomycota-dominated (in interphase soil); while core bacterial community shifted from Bacteroidetes to Proteobacteria dominance from truffle peridium to gleba tissue. At the truffle and soil interphase, an interphase-sieving process was confirmed by i) a clear exclusion of four bacterial phyla (Rokubacteria, Nitrospirae, Chloroflexi and Planctomycetes) in gleba; ii) a significant decrease in alpha-diversity (as revealed by Chao 1, Shannon and Simpson indices); and iii) a substantial decrease in the complexity of the network from bulk soil, to soil-truffle interphase, to peridium and finally to gleba. The network analysis of microbiome showed a more complex and higher number of positive microbial interactions in truffle tissues than in both bulk soil and peridium-adhering soil. Cupriavidus, Bradyrhizobium, Aminobacter and Mesorhizobium were the keystone network hub genera associated to truffle gleba. Conclusion: This study provides novel insights into the factors that drive the truffle microbiome dynamics and the recruitment and function of the microbiome components, showing than they are more complex than previously thought.

Author(s):  
Ze Ren ◽  
Hongkai Gao

Bacterial and fungal communities in biofilms are important components in driving biogeochemical processes in stream ecosystems. Previous studies have well documented the patterns of bacterial alpha diversity in stream biofilms in glacier-fed streams, where, however, beta diversity of the microbial communities has received much less attention especially considering both bacterial and fungal communities. A focus on beta diversity can provide insights into the mechanisms driving community changes associated to large environmental fluctuations and disturbances, such as in glacier-fed streams. Moreover, modularity of co-occurrence networks can reveal more ecological and evolutionary properties of microbial communities beyond taxonomic groups. Here, integrating beta diversity and co-occurrence approach, we explored the network topology and modularity of the bacterial and fungal communities with consideration of environmental variation in glacier-fed streams in Central Asia. Combining results from hydrological modeling and normalized difference of vegetation index, this study highlighted that hydrological variables and vegetation status are major variables determining the environmental heterogeneity of glacier-fed streams. Bacterial communities formed a more complex and connected network, while the fungal communities formed a more clustered network. Moreover, the strong interrelations among the taxonomic dissimilarities of bacterial community and modules suggest they had common processes in driving diversity and taxonomic compositions across the heterogeneous environment. In contrast, fungal community and modules generally showed distinct driving processes to each other. Moreover, bacterial and fungal communities also had different driving processes. Furthermore, the variation of bacterial community and modules were strongly correlated with hydrological properties and vegetation status but not with nutrients, while fungal community and modules (except one module) were not associated with environmental variation. Our results suggest that bacterial and fungal communities had distinct mechanisms in structuring microbial networks, and environmental variation had strong influences on bacterial communities but not on fungal communities. The fungal communities have unique assembly mechanisms and physiological properties which might lead to their insensitive responses to environmental variations compared to bacterial communities. Overall, beyond alpha diversity in previous studies, these results add our knowledge that bacterial and fungal communities have contrasting assembly mechanisms and respond differently to environmental variation in glacier-fed streams.


2019 ◽  
Author(s):  
Ze Ren ◽  
Hongkai Gao

Bacterial and fungal communities in biofilms are important components in driving biogeochemical processes in stream ecosystems. Previous studies have well documented the patterns of bacterial alpha diversity in stream biofilms in glacier-fed streams, where, however, beta diversity of the microbial communities has received much less attention especially considering both bacterial and fungal communities. A focus on beta diversity can provide insights into the mechanisms driving community changes associated to large environmental fluctuations and disturbances, such as in glacier-fed streams. Moreover, modularity of co-occurrence networks can reveal more ecological and evolutionary properties of microbial communities beyond taxonomic groups. Here, integrating beta diversity and co-occurrence approach, we explored the network topology and modularity of the bacterial and fungal communities with consideration of environmental variation in glacier-fed streams in Central Asia. Combining results from hydrological modeling and normalized difference of vegetation index, this study highlighted that hydrological variables and vegetation status are major variables determining the environmental heterogeneity of glacier-fed streams. Bacterial communities formed a more complex and connected network, while the fungal communities formed a more clustered network. Moreover, the strong interrelations among the taxonomic dissimilarities of bacterial community and modules suggest they had common processes in driving diversity and taxonomic compositions across the heterogeneous environment. In contrast, fungal community and modules generally showed distinct driving processes to each other. Moreover, bacterial and fungal communities also had different driving processes. Furthermore, the variation of bacterial community and modules were strongly correlated with hydrological properties and vegetation status but not with nutrients, while fungal community and modules (except one module) were not associated with environmental variation. Our results suggest that bacterial and fungal communities had distinct mechanisms in structuring microbial networks, and environmental variation had strong influences on bacterial communities but not on fungal communities. The fungal communities have unique assembly mechanisms and physiological properties which might lead to their insensitive responses to environmental variations compared to bacterial communities. Overall, beyond alpha diversity in previous studies, these results add our knowledge that bacterial and fungal communities have contrasting assembly mechanisms and respond differently to environmental variation in glacier-fed streams.


2021 ◽  
Author(s):  
Mei Zhang ◽  
Jianhua Han ◽  
Xueying Li ◽  
Pufan Zheng ◽  
Zhenlu Qiu ◽  
...  

Abstract The impact of A. palmeri invasion on soil bacterial community under different habitats is unclear. In this work, the influence of A. palmeri invasion on soil bacterial diversity and community structure were investigated using full-length 16S rRNA sequencing technology under four typical habitats of riverbank (A), roadside (B), wasteland (C) and farmland (D). A two-way ANOVA analysis showed that habitat, invasion and the interaction of them had little effect on alpha diversity, expect for habitat factor had a significant effect on Simpson indices (P<0.05). NMDS analysis demonstrated that soil bacterial community structures among different invasive habitats were clearly distinguished. In addition, the most abundant phyla in the non-invasive plots were Proteobacteria, Planctomycetes and Gemmatimonadetes. However, the third predominant phyla converted from Bacteroidetes to Gemmatimonadetes with the invasion of A. palmeri. LEfSe analysis revealed that the core microbiome, Burkholderiaceae and Betaproteobacteriales (riverbank habitat), Gemmatimonadetes and Gemmatimonadaceae (wasteland habitat), Sphingomonas_sediminicola (roadside habitat), Nitrosomonadaceae (farmland habitat), which played important roles in facilitating the establishment of A. palmeri to heterogeneous habitats.


2020 ◽  
Vol 13 (4) ◽  
pp. 499-509
Author(s):  
Nannan Wang ◽  
Lei Li ◽  
Bingwei Zhang ◽  
Shiping Chen ◽  
Wei Sun ◽  
...  

Abstract Aims Bacteria and fungi are two primary groups of soil microbes, and their stability determines the persistence of microbial functions in response to a changing environment. Recent studies reported higher fungal than bacterial stability under precipitation alteration, the underlying mechanisms, however, remain elusive. Methods A 3-year precipitation manipulation experiment in a semi-arid grassland was used to compare the bacterial and fungal diversities, including alpha diversity, beta diversity and microbial community composition turnover, in response to precipitation manipulations. A framework is proposed to understand the stability properties of bacteria and fungi under precipitation alteration. We conceived a diagrammatic valley to illustrate microbial stability with the depth representing resistance and the width ecological resilience. Important Findings We found that ±60% in precipitation significantly reduced the richness and increased the evenness of bacteria but had trivial impacts on fungi. Precipitation alteration yielded stronger impacts on the variation in alpha diversity of bacteria than fungi, suggesting that the bacterial community is more sensitive to water stress than the fungal community. Moreover, fungi had wider composition turnover than that of bacteria, indicating higher composition variation of fungi than bacteria. The population turnover of fungi, reflected by composition variation, coefficient variation of diversity index and composition turnover, was larger than that of bacteria at both temporal and spatial scales, indicating the population turnover promotes fungal stability. The higher stability of fungal community in tolerating water stress is analogous to a ball in a wide valley that swing substantially but remain close to its steady state; while the lower stability of bacteria community is analogous to a ball that swings slightly but stay far away from its steady state. Our finding that the fungal community had higher stability than bacterial community in a semi-arid grassland might be applicable to other biomes.


mBio ◽  
2016 ◽  
Vol 7 (4) ◽  
Author(s):  
Alejandra Hernandez-Agreda ◽  
William Leggat ◽  
Pim Bongaerts ◽  
Tracy D. Ainsworth

ABSTRACT For ecosystems vulnerable to environmental change, understanding the spatiotemporal stability of functionally crucial symbioses is fundamental to determining the mechanisms by which these ecosystems may persist. The coral Pachyseris speciosa is a successful environmental generalist that succeeds in diverse reef habitats. The generalist nature of this coral suggests it may have the capacity to form functionally significant microbial partnerships to facilitate access to a range of nutritional sources within different habitats. Here, we propose that coral is a metaorganism hosting three functionally distinct microbial interactions: a ubiquitous core microbiome of very few symbiotic host-selected bacteria, a microbiome of spatially and/or regionally explicit core microbes filling functional niches (<100 phylotypes), and a highly variable bacterial community that is responsive to biotic and abiotic processes across spatial and temporal scales (>100,000 phylotypes). We find that this coral hosts upwards of 170,000 distinct phylotypes and provide evidence for the persistence of a select group of bacteria in corals across environmental habitats of the Great Barrier Reef and Coral Sea. We further show that a higher number of bacteria are consistently associated with corals on mesophotic reefs than on shallow reefs. An increase in microbial diversity with depth suggests reliance by this coral on bacteria for nutrient acquisition on reefs exposed to nutrient upwelling. Understanding the complex microbial communities of host organisms across broad biotic and abiotic environments as functionally distinct microbiomes can provide insight into those interactions that are ubiquitous niche symbioses and those that provide competitive advantage within the hosts’ environment. IMPORTANCE Corals have been proposed as the most diverse microbial biosphere. The high variability of microbial communities has hampered the identification of bacteria playing key functional roles that contribute to coral survival. Exploring the bacterial community in a coral with a broad environmental distribution, we found a group of bacteria present across all environments and a higher number of bacteria consistently associated with mesophotic corals (60 to 80 m). These results provide evidence of consistent and ubiquitous coral-bacterial partnerships and support the consideration of corals as metaorganisms hosting three functionally distinct microbiomes: a ubiquitous core microbiome, a microbiome filling functional niches, and a highly variable bacterial community.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yan Zhang ◽  
Wei Wang ◽  
Zhangjun Shen ◽  
Jingjing Wang ◽  
Yajun Chen ◽  
...  

Abstract Background Studies on the rhizosphere microbiome of various plants proved that rhizosphere microbiota carries out various vital functions and can regulate the growth and improve the yield of plants. However, the rhizosphere microbiome of commercial blueberry was only reported by a few studies and remains elusive. Comparison and interpretation of the characteristics of the rhizosphere microbiome of blueberry are critical important to maintain its health. Results In this study, a total of 20 rhizosphere soil samples, including 15 rhizosphere soil samples from three different blueberry varieties and five bulk soil samples, were sequenced with a high-throughput sequencing strategy. Based on these sequencing datasets, we profiled the taxonomical, functional, and phenotypic compositions of rhizosphere microbial communities for three different blueberry varieties and compared our results with a previous study focused on the rhizosphere microbiome of blueberry varieties. Our results demonstrated significant differences in alpha diversity and beta diversity of rhizosphere microbial communities of different blueberry varieties and bulk soil. The distribution patterns of taxonomical, functional, and phenotypic compositions of rhizosphere microbiome differ across the blueberry varieties. The rhizosphere microbial communities of three different blueberry varieties could be distinctly separated, and 28 discriminative biomarkers were selected to distinguish these three blueberry varieties. Core rhizosphere microbiota for blueberry was identified, and it contained 201 OTUs, which were mainly affiliated with Proteobacteria, Actinobacteria, and Acidobacteria. Moreover, the interactions between OTUs of blueberry rhizosphere microbial communities were explored by a co-occurrence network of OTUs from an ecological perspective. Conclusions This pilot study explored the characteristics of blueberry’s rhizosphere microbial community, such as the beneficial microorganisms and core microbiome, and provided an integrative perspective on blueberry’s rhizosphere microbiome, which beneficial to blueberry health and production.


2020 ◽  
Author(s):  
Wei Zheng ◽  
Zhiyuan Zhao ◽  
Fenglian Lv ◽  
Yanan Yin ◽  
Zhaohui Wang ◽  
...  

Abstract Background In soil ecosystems, bacteria and fungi always co-exist in the same niche and interact with each other, especially in different sized soil aggregates. The bacterial and fungal community assembly process and bacteria-fungi interactions in soil aggregates, which is important for bacterial and fungal community diversity and composition, is still unclear.Methods We examined bacterial and fungal community assembly in soil macroaggregate (> 0.25 mm), microaggregate (0.053–0.25 mm) and smaller microaggregate (silt + clay, < 0.053 mm) in an apple orchard. The microbial community assembly processes were analyzed by normalized stochasticity ratio index (NST).Results Bacterial community diversity, composition and assembly were more affected by agricultural practice and aggregate than fungal community. Bacterial community assembly was more stochastic in silt + clay than in macroaggregate, and was more stochastic (NST > 50%) than fungal community in soil aggregates. Meanwhile, bacterial NST was negatively correlated with fungal diversity, and fungal NST was positively correlated with fungal diversity. Co-occurrence network suggested that the bacteria and fungi were less strongly interacting in the network of silt + clay, compared to macroaggregate. The results indicated that fungi impact on the bacterial community assembly in soil aggregate, and the stochasticity of bacterial community assembly was increased with the decrease of interaction between bacteria and fungi in soil aggregates.Conclusions This study enhances our understanding of the mechanism of bacterial and fungal community assembly and co-exists pattern of bacteria and fungi in soil aggregates.


2019 ◽  
Author(s):  
Wang Chen ◽  
Qian Jiang ◽  
GuoWei Yan ◽  
DeQin Yang

Abstract Background Oral microbiome and salivary proteins play a critical role in the occurrence and development of caries. In this study, we used metagenomic and metaproteomic analyses to explore the microbiological and proteinic biomarkers and investigate the etiology of caries in preschool children. Our study aims to offer a better comprehension of these factors and the relationship with caries, and these findings might facilitate caries risk assessment and provide a basis for future prevention strategies.Methods Children six to eight years old living in rural isolated areas with or without caries were recruited. Supragingival plaque and unstimulated saliva were collected for 16S rDNA pyrosequencing and isobaric tags for relative and absolute quantitation (iTRAQ)technique coupled with quantitative nano-flow liquid chromatography-tandem mass spectrometry(LC-MS/MS), respectively.Results A total of 328486 high-quality 16S rRNA sequences were obtained from 40 samples including 20 plaque and 20 saliva subjects, which was clustered into 14,076 OTUs, representing 18 phyla, 28 classes, 48 orders, 78 families,135 genera, and 410 species. We found the six most abundant phyla (Firmicutes, Bacteroidetes, Fusobacteria, Proteobacteria, Actinobacteria, and Candidate division TM7). The Alpha diversity analysis demonstrated that the richness and diversity of the bacterial communities were similar between caries and caries-free children; differences in the bacterial community composition was analyzed by LEfSe. The core microbiome was defined as 18 predominant genera coming from the saliva and plaque of subjects. For the results of salivary proteome analysis, 9135 unique peptides and 1662 proteins group were identified from 20 salivary samples. 258 proteins were differentially expressed between the caries-free and caries-active group, which might be a potential proteinic biomarker of caries and health status.Conclusions Dental caries is a multifactorial disease affecting many children around the world. The result of our study revealed the complexities of the oral bacterial community and confirmed “ecological plaque hypothesis”. In addition, as an important host factor of caries the salivary proteins are different in healthy or carious status. Exploration on microbiological or protein biomarkers is of great significance to prevent dental caries.


2018 ◽  
Vol 108 (12) ◽  
pp. 1493-1500 ◽  
Author(s):  
Linkun Wu ◽  
Jun Chen ◽  
Muhammad Umar Khan ◽  
Juanying Wang ◽  
Hongmiao Wu ◽  
...  

Consecutive monoculture of Rehmannia glutinosa in the same field leads to a severe decline in both quality and yield of tuberous roots, the most useful part in traditional Chinese medicine. Fungi are an important and diverse group of microorganisms in the soil ecosystem and play crucial roles in soil health. In this study, high-throughput pyrosequencing of internal transcribed spacer 2 ribosomal DNA amplicons was applied to gain insight into how consecutive monoculture practice influence and stimulate R. glutinosa rhizosphere and bulk soil fungal communities. The results from nonmetric multidimensional scaling ordination and clustering analysis revealed distinctive differences between rhizosphere and bulk soil fungal communities. However, longer-term monocultured bulk soils were more similar to the rhizosphere soils in comparison with the shorter-term monocultured bulk soils. Moreover, consecutive monoculture caused a gradual shift in the composition and structure of the soil fungal community. The cultivation of this plant led to the appearance of some exclusive operational taxonomic units in rhizosphere or bulk soils that were assigned to the genera Fusarium, Rhizoctonia, and so on. Furthermore, the sum of the relative abundance of species of Fusarium, Cylindrocarpon, and Gibberella (belonging to the family Nectriaceae); Rhizoctonia, Thanatephorus, and Ceratobasidium (belonging to the family Ceratobasidiaceae); and Lectera and Plectosporium (belonging to the family Plectosphaerellaceae) was significantly higher in consecutively monocultured (CM) than in newly planted (NP) soil in both rhizosphere and bulk soils. In particular, Fusarium abundance was significantly higher in CM than in NP in the rhizosphere, and higher in rhizosphere soils than in bulk soils for each treatment. A pathogenicity test showed that both Fusarium strains isolated were pathogenic to R. glutinosa seedlings. In addition, the culture filtrate and mycotoxins produced by Fusarium oxysporum significantly repressed the growth of the antagonistic bacterium, Pseudomonas aeruginosa. In conclusion, consecutive monoculture of R. glutinosa restructured the fungal communities in both rhizosphere and bulk soils but bulk effects developed more slowly over time in comparison with rhizosphere effects. Furthermore, microbial interactions might lead to a reduction in the abundance of beneficial microbes.


2021 ◽  
Author(s):  
Yan zhang ◽  
Wei Wang ◽  
Zhangjun Shen ◽  
Jingjing Wang ◽  
Yajun Chen ◽  
...  

Abstract Background: Studies on the rhizosphere microbiome of various plants proved that rhizosphere microbiota carries out various vital functions and can regulate the growth and improve the yield of plants. However, the rhizosphere microbiome of commercial blueberry was only reported by a few studies and remains elusive. Comparison and interpretation of the characteristics of the rhizosphere microbiome of blueberry are critical important to maintain its health. Methods: In this study, we collected 15 rhizosphere soil samples from three different blueberry varieties and five bulk soil samples, which were sequenced with a high-throughput sequencing strategy. Based on these sequencing datasets, we profiled the taxonomical, functional, and phenotypic compositions of rhizosphere microbial communities for three different blueberry varieties and compared our results with a previous study focused on the rhizosphere microbiome of blueberry varieties.Results: Our results demonstrated significant differences in alpha diversity and beta diversity of rhizosphere microbial communities of different blueberry varieties and bulk soil. The distribution patterns of taxonomical, functional, and phenotypic compositions of rhizosphere microbiome differ across the blueberry varieties. The rhizosphere microbial communities of three different blueberry varieties could be distinctly separated, and 28 discriminative biomarkers were selected to distinguish these three blueberry varieties. Core rhizosphere microbiota for blueberry was identified, and it contained 201 OTUs, which were mainly affiliated with Proteobacteria, Actinobacteria, and Acidobacteria. Moreover, the interactions between OTUs of blueberry rhizosphere microbial communities were explored by a co-occurrence network of OTUs from an ecological perspective. Conclusions: This pilot study explored the characteristics of blueberry’s rhizosphere microbial community, such as the beneficial microorganisms and core microbiome, and provided an integrative perspective on blueberry’s rhizosphere microbiome, which beneficial to blueberry health and production.


Sign in / Sign up

Export Citation Format

Share Document