scholarly journals Mapping the pre and post seismic crustal stress heterogeneity analogous to 2016, Mw 7.8, Kaikoura quake, New Zealand

Author(s):  
Anupama M. ◽  
Sunil P.S.

Abstract Heterogeneity of pre and post seismic stress states associated to any earthquake play a primary role in understanding the earthquake mechanism and hazard assessment of a seismically dynamic region. The Mw 7.8, November 14, 2016 Kaikoura, New Zealand earthquake offer an unprecedented possibility to observe the heterogeneity in stress field over a very complex fault system wherein subduction zone converges with the strike slip faults system. Here we report the pre and post seismic stress field asperity first time in terms of spatial and temporal variations of b-values associated to the Kaikoura main-shock. Pre seismic spatial disparity of b-value indicates the existence of two prominent low b-value clusters, one towards southwest closer to the epicenter and other to the north of the rupture zone. During co seismic period, owing to the stress release near the epicentral area, the pattern of prominent low b-value pattern has become negligible in the post seismic period. However, the pattern of low b-value in the north of the rupture zone remains similar in the post seismic period indicates the unreleased strain energy in the province. The temporal evaluation of the earthquakes frequency magnitude distributions over a period of two decades also showed an analogous pattern that the b-values were decreased considerably before the large earthquakes in the expanse, which could spawn a larger future earthquakes in the vicinity.

2020 ◽  
Author(s):  
Finnigan Illsley-Kemp ◽  
Martha Savage ◽  
Colin Wilson ◽  
S Bannister

© 2019. American Geophysical Union. All Rights Reserved. We use crustal seismic anisotropy measurements in the North Island, New Zealand, to examine structures and stress within the Taupō Volcanic Zone, the Taranaki Volcanic Lineament, the subducting Hikurangi slab, and the Hikurangi forearc. Results in the Taranaki region are consistent with NW-SE oriented extension yet suggest that the Taranaki volcanic lineament may be controlled by a deep-rooted, inherited crustal structure. In the central Taupō Volcanic Zone anisotropy fast orientations are predominantly controlled by continental rifting. However at Taupō and Okataina volcanoes, fast orientations are highly variable and radial to the calderas suggesting the influence of magma reservoirs in the seismogenic crust (≤15 km depth). The subducting Hikurangi slab has a predominant trench-parallel fast orientation, reflecting the pervasive presence of plate-bending faults, yet changing orientations at depths ≥120 km beneath the central North Island may be relics from previous subduction configurations. Finally, results from the southern Hikurangi forearc show that the orientation of stresses there is consistent with those in the underlying subducting slab. In contrast, the northern Hikurangi forearc is pervasively fractured and is undergoing E-W compression, oblique to the stress field in the subducting slab. The north-south variation in fore-arc stress is likely related to differing subduction-interface coupling. Across the varying tectonic regimes of the North Island our study highlights that large-scale tectonic forces tend to dictate the orientation of stress and structures within the crust, although more localized features (plate coupling, magma reservoirs, and inherited crustal structures) can strongly influence surface magmatism and the crustal stress field.


2008 ◽  
Vol 48 (1) ◽  
pp. 53 ◽  
Author(s):  
Chris Uruski ◽  
Callum Kennedy ◽  
Rupert Sutherland ◽  
Vaughan Stagpoole ◽  
Stuart Henrys

The East Coast of North Island, New Zealand, is the site of subduction of the Pacific below the Australian plate, and, consequently, much of the basin is highly deformed. An exception is the Raukumara Sub-basin, which forms the northern end of the East Coast Basin and is relatively undeformed. It occupies a marine plain that extends to the north-northeast from the northern coast of the Raukumara Peninsula, reaching water depths of about 3,000 m, although much of the sub-basin lies within the 2,000 m isobath. The sub-basin is about 100 km across and has a roughly triangular plan, bounded by an east-west fault system in the south. It extends about 300 km to the northeast and is bounded to the east by the East Cape subduction ridge and to the west by the volcanic Kermadec Ridge. The northern seismic lines reveal a thickness of around 8 km increasing to 12–13 km in the south. Its stratigraphy consists of a fairly uniformly bedded basal section and an upper, more variable unit separated by a wedge of chaotically bedded material. In the absence of direct evidence from wells and samples, analogies are drawn with onshore geology, where older marine Cretaceous and Paleogene units are separated from a Neogene succession by an allochthonous series of thrust slices emplaced around the time of initiation of the modern plate boundary. The Raukumara Sub-basin is not easily classified. Its location is apparently that of a fore-arc basin along an ocean-to-ocean collision zone, although its sedimentary fill must have been derived chiefly from erosion of the New Zealand land mass. Its relative lack of deformation introduces questions about basin formation and petroleum potential. Although no commercial discoveries have been made in the East Coast Basin, known source rocks are of marine origin and are commonly oil prone, so there is good potential for oil as well as gas in the basin. New seismic data confirm the extent of the sub-basin and its considerable sedimentary thickness. The presence of potential trapping structures and direct hydrocarbon indicators suggest that the Raukumara Sub-basin may contain large volumes of oil and gas.


1988 ◽  
Vol 78 (4) ◽  
pp. 1550-1562
Author(s):  
F. D. Morgan ◽  
G. Wadge ◽  
J. Latchman ◽  
W. P. Aspinall ◽  
D. Hudson ◽  
...  

Abstract An earthquake swarm that occurred in the vicinity of the island of Tobago (West Indies) during the latter half of 1982 was monitored in the near-field by a five-station seismograph network. The monitoring of the swarm eventually led to the issuing of a potential earthquake hazard alert, 3 days prior to the major energy release (earthquake magnitude mb = 5.2). We discuss the reasons for issuing this alert. In particular, daily monitoring of the changing b value and energy release was used to constrain estimates of future earthquake behavior. The aftershock seismicity showed activity in a direction trending west to WNW. This is in good agreement with the focal mechanism of the main earthquake which showed right-lateral strike-slip motion along an E-W fault plane dipping steeply (71°) to the north. This active fault appears to form part of the previously unrecognized Southern Tobago Fault System for which there is evidence in the geology of the Late Neogene rocks of the island.


2021 ◽  
Author(s):  
◽  
Vasiliki Mouslopoulou

<p>The North Island of New Zealand sits astride the Hikurangi margin along which the oceanic Pacific Plate is being obliquely subducted beneath the continental Australian Plate. The North Island Fault System1 (NIFS), in the North Island of New Zealand, is the principal active strike-slip fault system in the overriding Australian Plate accommodating up to 30% of the margin parallel plate motion. This study focuses on the northern termination of the NIFS, near its intersection with the active Taupo Rift, and comprises three complementary components of research: 1) the investigation of the late Quaternary (c. 30 kyr) geometries and kinematics of the northern NIFS as derived from displaced geomorphic landforms and outcrop geology, 2) examination of the spatial and temporal distribution of  paleoearthquakes in the NIFS over the last 18 kyr, as derived by fault-trenching and displaced landforms, and consideration of how these distributions may have produced the documented late Quaternary (c. 30 kyr) kinematics of the northern NIFS, and 3) Investigation of the temporal stability of the late Quaternary (c. 30 kyr) geometries and kinematics throughout the Quaternary (1-2 Ma), derived from gravity, seismic-reflection, drillhole, topographic and outcrop data. The late Quaternary (c. 30 kyr) kinematics of the northern NIFS transition northward along strike, from strike-slip to oblique-normal faulting, adjacent to the rift. With increasing proximity to the Taupo Rift the slip vector pitch on each of the faults in the NIFS steepens gradually by up to 60 degrees, while the mean fault-dip decreases from 90 degrees to 60 degrees W. Adjustments in the kinematics of the NIFS reflect the gradual accommodation of the NW-SE extension that is distributed outside the main physiographic boundary of the Taupo Rift. Sub-parallelism of slip vectors in the NIFS with the line of intersection between the two synchronous fault systems reduces potential space problems and facilitates the development of a kinematically coherent fault intersection, which allows the strike-slip component of slip to be transferred into the rift. Transfer of displacement from the NIFS into the rift accounts for a significant amount of the northeastward increase of extension along the rift. Steepening of the pitch of slip vectors towards the northern termination of the NIFS allows the kinematics and geometry of faulting to change efficiently, from strike-lip to normal faulting, providing an alternative mechanism to vertical axis rotations for terminating large strike-lip faults. Analyses of kinematic constraints from worldwide examples of synchronous strike-lip and normal faults that intersect to form two or three plate configurations, within either oceanic or continental crust, suggest that displacement is often transferred between the two fault systems in a similar manner to that documented at the NIFS - Taupo Rift fault intersection. The late Quaternary (c. 30 kyr) change in the kinematics of the NIFS along strike, from dominantly strike-slip to oblique-normal faulting, arises due to a combination of rupture arrest during individual earthquakes and variations in the orientation of the coseismic slip vectors. At least 80 % of all surface rupturing earthquakes appear to have terminated within the kinematic transition zone from strike-slip to oblique-normal slip. Fault segmentation reduces the magnitudes of large surface rupturing earthquakes in the northern NIFS from 7.4-7.6 to c. 7.0. Interdependence of throw rates between the NIFS and Taupo Rift suggests that the intersection of the two fault systems has functioned coherently for much of the last 0.6-1.5 Myr. Oblique-normal slip faults in the NIFS and the Edgecumbe Fault in the rift accommodated higher throw rates since 300 kyr than during the last 0.6-1.5 Myr. Acceleration of these throw rates may have occurred in response to eastward migration of rifting, increasing both the rates of faulting and the pitch of slip vectors. The late Quaternary (e.g. 30 kyr) kinematics, and perhaps also the stability, of the intersection zone has been geologically short lived and applied for the last c. 300 kyr.</p>


2020 ◽  
Author(s):  
Marc Regnier ◽  
Gabriela Ponce ◽  
Marianne Saillard ◽  
Laurence Audin ◽  
Sandro Vaca ◽  
...  

&lt;p&gt;Along the Ecuadorian margin, the North Andean Sliver is moving in the northeastward direction due to the oblique subduction of the Nazca plate. The opening of the gulf of Guayaquil is a consequence of this motion. Two principal models compete to explain the opening. One proposes an opening achieved essentially with strike-slip motion along a single major fault through the gulf, the other with a combination of strike-slip and normal faulting on both sides of the gulf. The consequences in term of seismic hazard are very different. A single strike-slip fault model could imply a long fault segment capable of generating large magnitude events. In contrast, a multi-segments composite fault system will give conditions for producing small to medium size earthquakes. The southern Ecuador subduction zone is characterized by the absence of large historical earthquake. Data from the historical and instrumental seismicity for magnitude above 4 show the forearc has a high level of moderate seismic activity within and around the gulf that connects to the crustal seismic activity of the volcanic arc. In contrast, the forearc elsewhere shows very little or no seismic activity between the marine forearc zone and the volcanic arc. Regional and global CMTS data show a large number of mechanisms within the gulf that do not line up on a simple straight fault system. We present new earthquake data from the recently upgraded national seismic network of Ecuador. They provide the first image of SW-NE trending crustal faults stretching in the central part of the gulf and running eastward south of the Puna island. The main seismic belt appears to be discontinuous, made of short length segments with variable trends. The variety of focal solutions also indicates complex faulting. As the shape of this seismic belt is in good agreement with the orientation of the GPS velocity vectors, this new fault zone is readily interpreted as the southernmost segment of the actual NAS boundary. Others seismic clusters are observed parallel to the northern coast of the gulf, indicating active structures eventually accommodating the North-South opening of the gulf through normal faulting. b-value analysis of the main seismic belt seismicity shows high b value (&gt;1) indicating either highly fractured or heterogeneous medium, or/and low stress level within the gulf of Guayaquil. This is again in agreement with a multi-segmented faulting system and also with the lack of large magnitude event in the historical seismic data. A cross-section for the entire seismic belt shows a depth extend of the crustal seismic activity down to 30 km which confirms the seismic belt to be a sliver boundary.&lt;/p&gt;


2021 ◽  
Vol 873 (1) ◽  
pp. 012031
Author(s):  
A P Astuti ◽  
E M Elsera ◽  
M F I Massinai ◽  
M A Akbar

Abstract The north arm of Sulawesi has a fairly high level of seismicity. The North Sulawesi arm is bounded in the south by the Palu-Koro Fault, the northern part is bounded by the North Sulawesi Trench and the Molluca Sea Thrust in the east. Therefore, this study aims to analyze the characteristic of the 2010-2020 earthquakes in the north arm of Sulawesi by analyzing the earthquake’s focal mechanism and mapping the b-value using the maximum likelihood method. From this study, we obtained the focal mechanism consist of thrust and strike-slip, this is due to the activity of faults and subduction zones in the North arm of Sulawesi such as the Palu-koro fault, the Gorontalo Fault, North Sulawesi Trench, Molucca Sea Collision, and several other faults that affect the seismicity of this region. The variation of the b-value ranging from 0.5-1.1 These studies indicate that thrust fault regions have lower b-values, while strike-slip fault regions have intermediate b-values. Meanwhile, areas with active volcanoes tend to have high b-values. The results of this research can be used as a basis for decision making related to earthquake mitigation in this area in the future.


2020 ◽  
Vol 110 (5) ◽  
pp. 2031-2046
Author(s):  
Jeong-Ung Woo ◽  
Minook Kim ◽  
Junkee Rhie ◽  
Tae-Seob Kang

ABSTRACT The sequence of foreshocks, mainshock, and aftershocks associated with a fault rupture is the result of interactions of complex fault systems, the tectonic stress field, and fluid movement. Analysis of shock sequences can aid our understanding of the spatial distribution and magnitude of these factors, as well as provide seismic hazard assessment. The 2017 Mw 5.5 Pohang earthquake sequence occurred following fluid-induced seismic activity at a nearby enhanced geothermal system site and is an example of reactivation of a critically stressed fault system in the Pohang basin, South Korea. We created an earthquake catalog based on unsupervised data mining and measuring the energy ratio between short- and long-window seismograms recorded by a temporary seismic network. The spatial distribution of approximately 4000 relocated aftershocks revealed four fault segments striking southwestward. We also determined that the three largest earthquakes (ML&gt;4) were located at the boundary of two fault segments. We infer that locally concentrated stress at the junctions of the faults caused such large earthquakes and that their ruptures on multiple segments can explain the high proportion of non-double-couple components. The area affected by aftershocks continues to expand to the southwest and northeast by 0.5 and 1  km decade−1, respectively, which may result from postseismic deformation or sequentially transferred static coulomb stress. The b-values of the Gutenberg–Richter relationship temporarily increased for the first three days of the aftershock sequence, suggesting that the stress field was perturbed. The b-values were generally low (&lt;1) and locally variable throughout the aftershock area, which may be due to the complex fault structures and material properties. Furthermore, the mapped p-values of the Omori law vary along strike, which may indicate anisotropic expansion speeds in the aftershock region.


2013 ◽  
Vol 13 (1) ◽  
pp. 45-51 ◽  
Author(s):  
G. Chouliaras ◽  
G. Drakatos ◽  
K. Pavlou ◽  
K. Makropoulos

Abstract. In this investigation we examine the local stress field and the seismicity patterns associated with the 2011–2012 seismicity swarm in the Messinia basin, south-western Peloponnesus, Greece, using the seismological data of the National Observatory of Athens (NOA). During this swarm more than 2000 events were recorded in a 12 month period by the Hellenic Unified Seismological Network (HUSN) and also by the additional local installation of four portable broadband seismographic stations by NOA. The results indicate a Gaussian distribution of swarm activity and the development of a seismicity cluster in a pre-existing seismic gap within the Messinia basin. Centroid Moment Tensor solutions demonstrate a normal fault trending northwest–southeast and dipping to the southwest primarily due to an extensional stress field. During this seismicity swarm an epicentre migration of the three largest shocks is observed, from one end of the rupture zone in the north-western part of the cluster, towards the other edge of the rupture in the south-eastern part of the cluster. This migration is found to follow the Coulomb failure criterion that predicts the advancement and retardation of the stress field and the patterns of increases and decreases of the seismicity rate (b-value) of the frequency–magnitude relation.


2020 ◽  
Author(s):  
Yifan Yin ◽  
Stefan Wiemer ◽  
Edi Kissling ◽  
Federica Lanza ◽  
Bill Fry

&lt;p&gt;Crustal earthquakes in low deform rate regions are rare in the human life span but bear heavy losses when occurring. Limited observations also hinter robust earthquake forecasts. In this study, we use a high-resolution catalog to investigate the triggering of the 2010-2011 Canterbury earthquake sequence, New Zealand. The seismic sequence occurred in the North Canterbury Plains, a low-stress, low-seismicity region relatively close to active plate boundaries where large earthquakes are frequent, such as the 2009 M&lt;sub&gt;W&lt;/sub&gt; 7.8 Dusky Sound Earthquake. To map the post-seismic stress transfers of remote large events acting in the region, we calculate the temporal and spatial seismic rate changes in the crust from 2005 to the 2010 Mw 7.1 Darfield Earthquake, the first mainshock of the Canterbury sequence. We use template matching analysis to obtain a new high-resolution seismic catalog that includes events previously undetected by routine network monitoring. Detection quality is further established through the usage of a Support Vector Machine classifier. Using the new catalog, we observe a seismic quiescence on the North Canterbury Plain between Dusky Sound Earthquake and the Darfield Earthquake. The quiescence is accompanied by a reduced rate in micro-seismicity, suggesting a lowered b-value in the region primed for the Canterbury sequence. The lack of proof of dynamic or static triggering suggests that complex fault interactions lead to the onset of the Darfield Earthquake.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document