scholarly journals Mechanism of Baicalein in Brain Injury After Intracerebral Hemorrhage by Inhibiting the ROS/NLRP3 Inflammasome Pathway

Author(s):  
Xuan Chen ◽  
Yue Zhou ◽  
Shanshan Wang ◽  
Wei Wang

Abstract Intracerebral hemorrhage (ICH) is a devastating subtype of stroke with high disability/mortality. Baicalein has strong anti-inflammatory activity. This study aims to explore the mechanism of baicalein on brain injury after ICH. The model of brain injury after ICH was established by collagenase induction, followed by the evaluation of neurological severity, brain water content, the degenerated neurons, neuronal apoptosis and reactive oxygen species (ROS). The ICH model was treated with baicalein and silencing NLRP3 to detect brain injury. The expression of NLRP3 inflammasome was detected after treatment with ROS scavenger. The expression of oxidative stress markers and inflammatory factors were detected, and the levels of components in NLRP3 inflammasome were detected. Baicalein reduced the damage of nervous system, lesion surface, brain water content and apoptosis. Baicalein inhibited malondialdehyde and increased IL-10 by inhibiting ROS in brain tissue after ICH. Baicalein inhibited the high expression of NLRP3 inflammasome in ICH. ROS scavenger inhibited the NLRP3 inflammatory response by inhibiting ROS levels. Silencing NLRP3 alleviated the brain injury after ICH by inhibiting excessive oxidative stress and inflammatory factors. Overall, baicalein alleviated the brain injury after ICH by inhibiting ROS and NLRP3 inflammasome.

2020 ◽  
Vol 12 (1) ◽  
pp. 001-008
Author(s):  
Ting Liu ◽  
Xing-Zhi Liao ◽  
Mai-Tao Zhou

Abstract Background Brain edema is one of the major causes of fatality and disability associated with injury and neurosurgical procedures. The goal of this study was to evaluate the effect of ulinastatin (UTI), a protease inhibitor, on astrocytes in a rat model of traumatic brain injury (TBI). Methodology A rat model of TBI was established. Animals were randomly divided into 2 groups – one group was treated with normal saline and the second group was treated with UTI (50,000 U/kg). The brain water content and permeability of the blood–brain barrier were assessed in the two groups along with a sham group (no TBI). Expression of the glial fibrillary acidic protein, endthelin-1 (ET-1), vascular endothelial growth factor (VEGF), and matrix metalloproteinase 9 (MMP-9) were measured by immunohistochemistry and western blot. Effect of UTI on ERK and PI3K/AKT signaling pathways was measured by western blot. Results UTI significantly decreased the brain water content and extravasation of the Evans blue dye. This attenuation was associated with decreased activation of the astrocytes and ET-1. UTI treatment decreased ERK and Akt activation and inhibited the expression of pro-inflammatory VEGF and MMP-9. Conclusion UTI can alleviate brain edema resulting from TBI by inhibiting astrocyte activation and ET-1 production.


2017 ◽  
Vol 30 (4) ◽  
pp. 413-419 ◽  
Author(s):  
Jianping Niu ◽  
Rui Hu

This study aimed to explore the role and mechanism(s) of flunarizine hydrochloride in the intracerebral hemorrhage (ICH) rats. The 32 adult male Sprague Dawley (SD) rats were randomly assigned into four groups: control group, sham group, ICH group, and FLU + ICH group. The effects of flunarizine hydrochloride were assessed on the basis of hematoma volume, blood–brain barrier (BBB) integrity, and brain water content in the ICH rat models. The role of flunarizine hydrochloride in cell recovery was assessed by behavioral scores, quantitative real-time polymerase chain reaction (qRT-PCR), and western blot assay. Involvement of PI3K/AKT pathway in exerting the effect of flunarizine hydrochloride was also determined. Results showed that the hematoma volume, BBB integrity, and brain water content were significantly decreased in the FLU + ICH group. Cell apoptosis significantly increased in the ICH model group, while flunarizine hydrochloride decreased this increase. The expressions of glial cell line-derived neurotrophic factor (GDNF), neuroglobin (NGB), and p-AKT were increased after flunarizine hydrochloride treatment in ICH rats. In conclusion, flunarizine hydrochloride has protective effects against ICH by reducing brain injury, cell apoptosis, and the activation of P13K/AKT pathway. These findings provide a theoretical basis for the treatment of flunarizine hydrochloride in ICH.


2018 ◽  
Vol 13 (1) ◽  
pp. 77-81
Author(s):  
Chen Peng ◽  
Shibo Duan ◽  
Lou Gang

AbstractObjectiveTo investigate the efficacy of Danhong injection on the serum concentration of tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6) and nuclear factor kappa-light-chain-enhancer of activated B (NF-κB) in rats with intracerebral hemorrhage (ICH) and evaluate its therapeutic effects on inflammation and cerebral edema.MethodsSixty male Wistar rats were randomly divided into control, model and Danhong groups with 25 rats in each group. Intracerebral injection of autologous arterial blood was performed on model and Danhong groups in order to establish intracerebral hemorrhage model. Rats in the control group were given the same operation procedure without blood injection. After successfully establishing the intracerebral hemorrhage model, the rats were given Danhong (2ml/kg/d) through intraperitoneal injection. Rats in the control and model groups were given the same amount of normal saline respectively. The brain water content (BWC) and serum level of TNF-α, IL-6 and NF-κB were measured in all groups at the time points of day 1, 3, 5, 7 and 9.ResultsThe neurological deficit score (NDS) were not statistical different in days 1, 3 and 5 between the model and Danhong group (P>0.05); However, on day 7 and 9 after modeling, the NDS in the Danhong group was significant lower than that of the Model group (P<0.05). The brain water content in the model and Danhong groups were significantly elevated compared to control group (P<0.05). The brain water content was significant elevated after modeling in the model and Danhong groups on day 3 and gradually decreased over the next 6 days.The brain water content was significantly higher in the model group for days 3 to 9 compared to the Danhong group (P<0.05). Compared to the model group, the serum NF-κb was significantly lower in the Danhong group for the time point of day 3 and 5 (P<0.05); However, compared to the model group, the serum TNF-α and IL-6 levels in the Danhong group were significantly lower for each time point (P<0.05). Conclusion Danhong injection can reduce cerebral edema in rats with cerebral hemorrhage, and protect the brain nerve function. These effects may be related to its function of regulating serum TNF-α, NF-κB and IL-6 expression.


2004 ◽  
Vol 24 (5) ◽  
pp. 487-494 ◽  
Author(s):  
Takehiro Nakamura ◽  
Guohua Xi ◽  
Ya Hua ◽  
Timothy Schallert ◽  
Julian T. Hoff ◽  
...  

Gene knockout or transgenic animals may assist in elucidating the mechanisms of brain injury after intracerebral hemorrhage (ICH). However, almost all commercially available transgenic or knockout animals are mice. The purpose of this study was to develop an ICH model in mice and to investigate the influence of gender and complement C5 genetic differences on outcome after ICH. Male and female C57BL/6 mice and C5-deficient and -sufficient control mice were anesthetized and then received an injection of 30 μL autologous whole blood into the right basal ganglia. Brain water content was studied at 1 and 3 days after ICH. Behavioral tests (forelimb use asymmetry and corner turn test) were performed at 1, 3, 7, 14, 21, or 28 days after ICH. In male mice, brain water content was significantly increased in the ipsilateral basal ganglia 1 and 3 days after ICH, compared with saline injection controls ( P>0.01). There were marked neurological deficits 1 and 3 days after ICH, with progressive recovery over 28 days. In contrast, although brain edema and behavioral deficits were similar at 1 day after ICH in female and male mice, female mice showed reduced edema at 3 days and a faster recovery of behavioral deficits after ICH. 17β-estradiol treatment in male mice markedly reduced ICH-induced edema ( P>0.01). Brain water content was significantly increased in C5-deficient mice compared with C5-sufficient at 3 days after ICH ( P>0.05). These findings suggest that the mouse ICH model is a reproducible and feasible model. These results also suggest that gender and complement C5 are factors affecting brain injury after ICH.


2013 ◽  
Vol 119 (2) ◽  
pp. 353-361 ◽  
Author(s):  
Saleh Zahedi Asl ◽  
Mohammad Khaksari ◽  
Ali Siahposht Khachki ◽  
Nader Shahrokhi ◽  
Shahla Nourizade

Object Although there is evidence that estradiol has neuroprotective effects after traumatic brain injury (TBI) in female rats, it is unclear which estrogen receptor (ER) subtype, ERα or ERβ, mediates this effect. The authors therefore examined the roles of the different ERs in this effect. Here the authors used the ERα selective agonist propyl pyrazole triol (PPT) and the ERβ selective agonist diarylpropionitrile (DPN) alone and in combination in female rats to investigate this question. Methods Before the ovariectomized animals were injured using the Marmarou TBI technique, they were randomly divided into the following 9 groups: control, sham, TBI, vehicle, E1 (physiological dose of 17-β estradiol), E2 (pharmacological dose of 17-β estradiol), PPT, DPN, and PPT+DPN. Levels of blood-brain barrier (BBB) disruption (5 hours) and water content (24 hours) were evaluated after TBI. In groups receiving drugs or vehicle, treatment was administered as a single dose intraperitoneally 30 minutes after induction of TBI. Results Results showed that brain edema or brain water content after TBI was lower (p < 0.001) in the E2, PPT, DPN, and PPT+DPN groups than it was in the vehicle group. After trauma, the Evans blue dye content or BBB permeability was significantly higher in the TBI and vehicle groups (p < 0.001) than in the E2, PPT, DPN, and PPT+DPN groups. The inhibitory effects of PPT+DPN on brain water content, neurological scores, and Evans blue dye content were the highest for all groups. Although both PPT and DPN increased neurological scores after TBI, PPT appears to be more effective in increasing neurological scores. Conclusions Neuroprotective effects of estradiol on brain edema, BBB permeability, and neurological scores are mediated through both ERα and ERβ. This may suggest a therapeutic potential in the brain trauma for ER-specific agonists.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Siming Fu ◽  
Xu Luo ◽  
Xuan Wu ◽  
Tongyu Zhang ◽  
Linggui Gu ◽  
...  

Oxidative stress and neuronal apoptosis play crucial roles in secondary brain injury (SBI) after intracerebral hemorrhage (ICH). Recently, Nle4-D-Phe7-α-melanocyte-stimulating hormone (NDP-MSH), a synthetic agonist of the melanocortin-1 receptor (Mc1r), has been proved to inhibit neuroinflammatory in several diseases. This study is aimed at exploring if NDP-MSH could reduce oxidative stress and neuronal apoptosis following ICH, as well as the potential mechanism. A mouse ICH model was induced by autologous blood injection. NDP-MSH was intraperitoneally injected at 1 h after ICH. Mc1r siRNA and PI3K inhibitor LY294002 were administrated to inhibit the expression of Mc1r and phosphorylation of PI3K, respectively. Neurological test, brain water content, enzyme-linked immunosorbent assay (ELISA), terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL), immunofluorescence, and Western blot analysis were utilized in this study. The results exhibited that Mc1r was mainly expressed in neurons, and its level in the ipsilateral hemisphere was significantly elevated after ICH. NDP-MSH treatment significantly attenuated the neurological deficits and brain water content 24 hours after ICH, which was accompanied by the inhibition of oxidative stress and neuronal apoptosis. The administration of NDP-MSH after ICH significantly promoted the expression of Mc1r, p-PI3K, p-Akt, and p-Nrf2, followed by an increase of Bcl-2 and reduction of cleaved caspase-3. Conversely, downregulating the expression of Mc1r and phosphorylation of PI3K aggravated the neurological deficits and brain edema at 24 hours after ICH, meanwhile, the effect of NDP-MSH on the expression of Mc1r, p-PI3K, p-Akt, p-Nrf2, Bcl-2, and cleaved caspase 3 was also abolished. In conclusion, our data suggest that the activation of Mc1r by NDP-MSH ameliorates oxidative stress and neuronal apoptosis through the PI3K/Akt/Nrf2 signaling pathway after ICH in mice.


2021 ◽  
pp. 1-9
Author(s):  
Qinhan Hou ◽  
Hongmou Chen ◽  
Quan Liu ◽  
Xianlei Yan

Traumatic brain injury (TBI) can induce neuronal apoptosis and neuroinflammation, resulting in substantial neuronal damage and behavioral disorders. Fibroblast growth factors (FGFs) have been shown to be critical mediators in tissue repair. However, the role of FGF10 in experimental TBI remains unknown. In this study, mice with TBI were established via weight-loss model and validated by increase of modified neurological severity scores (mNSS) and brain water content. Secondly, FGF10 levels were elevated in mice after TBI, whereas intraventricular injection of Ad-FGF10 decreased mNSS score and brain water content, indicating the remittance of neurological deficit and cerebral edema in TBI mice. In addition, neuronal damage could also be ameliorated by stereotactic injection of Ad-FGF10. Overexpression of FGF10 increased protein expression of Bcl-2, while it decreased Bax and cleaved caspase-3/PARP, and improved neuronal apoptosis in TBI mice. In addition, Ad-FGF10 relieved neuroinflammation induced by TBI and significantly reduced the level of interleukin 1β/6, tumor necrosis factor α, and monocyte chemoattractant protein-1. Moreover, Ad-FGF10 injection decreased the protein expression level of Toll-like receptor 4 (TLR4), MyD88, and phosphorylation of NF-κB (p-NF-κB), suggesting the inactivation of the TLR4/MyD88/NF-κB pathway. In conclusion, overexpression of FGF10 could ameliorate neurological deficit, neuronal apoptosis, and neuroinflammation through inhibition of the TLR4/MyD88/NF-κB pathway, providing a potential therapeutic strategy for brain injury in the future.


Stroke ◽  
2021 ◽  
Vol 52 (Suppl_1) ◽  
Author(s):  
Tomoyuki Iwai ◽  
Shin Nakayama

Introduction: Cerebral edema following cardiac arrest and cardiopulmonary resuscitation (CA/CPR) is associated with unfavorable neurologic outcome. The Na + -K + -2Cl - water cotransporter NKCC1 is suspected to be a critical mediator of edema formation after ischemia. It is reported that β1 adrenoreceptor antagonists protect neurons following brain ischemia in rodents. β1 adrenoreceptor antagonists inhibit the Na + -K + -ATPase, which can inhibit driving force of NKCC1 that theoretically reduces cerebral edema following ischemia-reperfusion injury. In this study, we examined whether landiolol, a selective β1 adrenoreceptor antagonist, attenuates cerebral edema following CA/CPR. Methods: Isoflurane-anesthetized adult male mice (C57BL/6J, 25-30g) were randomized into landiolol group or control group. After 7-min CA followed by CPR, landiolol (0.5ml, 830μg/ml) was administered by continuous infusion intravenously for 4 hours. Animals in control group were given normal saline (0.5ml) in the same manner. Twenty-four hours after CA/CPR, the brain was removed to assess brain water content using wet-to-dry method. The primary outcome was measurement of the brain water content. Heart rate and arterial blood pressure were recorded. Measured parameters were analyzed by one-way ANOVA with post hoc Tukey-Kramer test using SPSS® statistics 25. Differences were considered statistically significant at a P value < 0.05. Results: Brain water contents was increased in control group mice after CA/CPR (n=10) compared with those in sham operated mice (n=5) (79.5±0.85% vs 78.3±0.14%, P=0.003). Compared with control group, landiolol treatment significantly reduced brain water content in mice subjected to CA/CPR (n=12) (78.9±0.51% vs 79.5±0.85%, P=0.04). Conclusion: Landiolol attenuated brain edema following CA/CPR. These results may suggest selective β1-blocker could be alternative treatment for neuroprotection in patients who suffered CA/CPR.


2021 ◽  
Vol 12 ◽  
Author(s):  
Rui-Pei Yang ◽  
Da-Ke Cai ◽  
Yu-Xing Chen ◽  
Hai-Ning Gang ◽  
Mei Wei ◽  
...  

Tao-He-Cheng-Qi decoction (THCQ) is an effective traditional Chinese medicine used to treat intracerebral hemorrhage (ICH). This study was performed to investigate the possible neuroprotective effect of THCQ decoction on secondary brain damage in rats with intracerebral hemorrhage and to elucidate the potential mechanism based on a metabolomics approach. Sprague-Dawley (SD) rats were randomly divided into five groups: the sham group, collagenase-induced ICH model group, THCQ low-dose (THCQ-L)-treated group, THCQ moderate-dose (THCQ-M)-treated group and THCQ high-dose (THCQ-H)-treated group. Following 3 days of treatment, behavioral changes and histopathological lesions in the brain were estimated. Untargeted metabolomics analysis with multivariate statistics was performed by using ultrahigh-performance liquid chromatography–mass spectrometry (UPLC-Q-Exactive Orbitrap MS). THCQ treatment at two dosages (5.64 and 11.27 g/kg·d) remarkably improved behavior (p &lt; 0.05), brain water content (BMC) and hemorheology (p &lt; 0.05) and improved brain nerve tissue pathology and inflammatory infiltration in ICH rats. Moreover, a metabolomic analysis demonstrated that the serum metabolic profiles of ICH patients were significantly different between the sham group and the ICH-induced model group. Twenty-seven biomarkers were identified that potentially predict the clinical benefits of THCQ decoction. Of these, 4 biomarkers were found to be THCQ-H group-specific, while others were shared between two clusters. These metabolites are mainly involved in amino acid metabolism and glutamate-mediated cell excitotoxicity, lipid metabolism-mediated oxidative stress, and mitochondrial dysfunction caused by energy metabolism disorders. In addition, a correlation analysis showed that the behavioral scores, brain water content and hemorheology were correlated with levels of serum metabolites derived from amino acid and lipid metabolism. In conclusion, the results indicate that THCQ decoction significantly attenuates ICH-induced secondary brain injury, which could be mediated by improving metabolic disorders in cerebral hemorrhage rats.


Sign in / Sign up

Export Citation Format

Share Document