scholarly journals A Deep Neural Network for Gait Classification Based on Inertial Sensors in Post-Stroke Patients

2020 ◽  
Author(s):  
Fu-Cheng Wang ◽  
Chin-Hsien Lin ◽  
Wei Yuan ◽  
You-Chi Li ◽  
Tien-Yun Kuo ◽  
...  

Abstract Background: Stroke survivors usually experience partial disability, due to abnormal gaits, which vary widely and require tailored rehabilitation programs. However, most gait classifications are based mainly on clinical assessments, which can be influenced by the therapist’s experience. Inertial measurement units (IMUs) are devices that combine accelerometers and gyroscopes to detect movement. IMUs have been successfully used for assessing gait characteristics. Here, we aimed to develop a Deep Neural Network (DNN) model that incorporated information from a motion capture system and multi-labeling IMUs information. This DNN was developed to recognize individual gait patterns in patients affected by stroke to facilitate the design of suitable rehabilitation strategies and promote functional recovery.Methods: We recruited ten patients, aged 20–75 years, with a first-ever, unilateral, ischemic stroke, which caused mild to moderate leg paresis 4 weeks after stroke and ten neurologically normal healthy controls. We applied a motion capture system integrated with multi-label IMUs to acquire the gait information. The motion capture system measured gait information by detecting movement of LED markers attached to each participant. In addition, the IMUs were attached to each participant’s lower limbs to measure kinematic data. These measurements were then applied to the development of a DNN model that could recognize gait characteristics in patients after a stroke and in normal controls.Results: The DNN model achieved an average accuracy of 98.28% in differentiating the stroke gait from the normal gait. Among patients with stroke, the DNN model had an average accuracy of 96.86% in classifying the gait abnormality as either a drop-foot gait or a circumduction gait. We also applied a publicly available dataset, the Physical Activity Monitoring Data Set, which contained IMU information from another independent set of participants to validate our DNN model. We found an average accuracy of 98.60%.Conclusions: We developed a DNN model based on integrated information from a motion capture system and multi-label IMU inputs. This model might assist clinicians and therapists in identifying abnormal gaits more accurately and in applying suitable training programs within the “golden time window” of rehabilitation, after the onset of stroke.

2020 ◽  
pp. 1-14
Author(s):  
Esraa Hassan ◽  
Noha A. Hikal ◽  
Samir Elmuogy

Nowadays, Coronavirus (COVID-19) considered one of the most critical pandemics in the earth. This is due its ability to spread rapidly between humans as well as animals. COVID_19 expected to outbreak around the world, around 70 % of the earth population might infected with COVID-19 in the incoming years. Therefore, an accurate and efficient diagnostic tool is highly required, which the main objective of our study. Manual classification was mainly used to detect different diseases, but it took too much time in addition to the probability of human errors. Automatic image classification reduces doctors diagnostic time, which could save human’s life. We propose an automatic classification architecture based on deep neural network called Worried Deep Neural Network (WDNN) model with transfer learning. Comparative analysis reveals that the proposed WDNN model outperforms by using three pre-training models: InceptionV3, ResNet50, and VGG19 in terms of various performance metrics. Due to the shortage of COVID-19 data set, data augmentation was used to increase the number of images in the positive class, then normalization used to make all images have the same size. Experimentation is done on COVID-19 dataset collected from different cases with total 2623 where (1573 training,524 validation,524 test). Our proposed model achieved 99,046, 98,684, 99,119, 98,90 In terms of Accuracy, precision, Recall, F-score, respectively. The results are compared with both the traditional machine learning methods and those using Convolutional Neural Networks (CNNs). The results demonstrate the ability of our classification model to use as an alternative of the current diagnostic tool.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Mohammed Aliy Mohammed ◽  
Fetulhak Abdurahman ◽  
Yodit Abebe Ayalew

Abstract Background Automating cytology-based cervical cancer screening could alleviate the shortage of skilled pathologists in developing countries. Up until now, computer vision experts have attempted numerous semi and fully automated approaches to address the need. Yet, these days, leveraging the astonishing accuracy and reproducibility of deep neural networks has become common among computer vision experts. In this regard, the purpose of this study is to classify single-cell Pap smear (cytology) images using pre-trained deep convolutional neural network (DCNN) image classifiers. We have fine-tuned the top ten pre-trained DCNN image classifiers and evaluated them using five class single-cell Pap smear images from SIPaKMeD dataset. The pre-trained DCNN image classifiers were selected from Keras Applications based on their top 1% accuracy. Results Our experimental result demonstrated that from the selected top-ten pre-trained DCNN image classifiers DenseNet169 outperformed with an average accuracy, precision, recall, and F1-score of 0.990, 0.974, 0.974, and 0.974, respectively. Moreover, it dashed the benchmark accuracy proposed by the creators of the dataset with 3.70%. Conclusions Even though the size of DenseNet169 is small compared to the experimented pre-trained DCNN image classifiers, yet, it is not suitable for mobile or edge devices. Further experimentation with mobile or small-size DCNN image classifiers is required to extend the applicability of the models in real-world demands. In addition, since all experiments used the SIPaKMeD dataset, additional experiments will be needed using new datasets to enhance the generalizability of the models.


Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 807
Author(s):  
Carlos M. Castorena ◽  
Itzel M. Abundez ◽  
Roberto Alejo ◽  
Everardo E. Granda-Gutiérrez ◽  
Eréndira Rendón ◽  
...  

The problem of gender-based violence in Mexico has been increased considerably. Many social associations and governmental institutions have addressed this problem in different ways. In the context of computer science, some effort has been developed to deal with this problem through the use of machine learning approaches to strengthen the strategic decision making. In this work, a deep learning neural network application to identify gender-based violence on Twitter messages is presented. A total of 1,857,450 messages (generated in Mexico) were downloaded from Twitter: 61,604 of them were manually tagged by human volunteers as negative, positive or neutral messages, to serve as training and test data sets. Results presented in this paper show the effectiveness of deep neural network (about 80% of the area under the receiver operating characteristic) in detection of gender violence on Twitter messages. The main contribution of this investigation is that the data set was minimally pre-processed (as a difference versus most state-of-the-art approaches). Thus, the original messages were converted into a numerical vector in accordance to the frequency of word’s appearance and only adverbs, conjunctions and prepositions were deleted (which occur very frequently in text and we think that these words do not contribute to discriminatory messages on Twitter). Finally, this work contributes to dealing with gender violence in Mexico, which is an issue that needs to be faced immediately.


Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1514
Author(s):  
Seung-Ho Lim ◽  
WoonSik William Suh ◽  
Jin-Young Kim ◽  
Sang-Young Cho

The optimization for hardware processor and system for performing deep learning operations such as Convolutional Neural Networks (CNN) in resource limited embedded devices are recent active research area. In order to perform an optimized deep neural network model using the limited computational unit and memory of an embedded device, it is necessary to quickly apply various configurations of hardware modules to various deep neural network models and find the optimal combination. The Electronic System Level (ESL) Simulator based on SystemC is very useful for rapid hardware modeling and verification. In this paper, we designed and implemented a Deep Learning Accelerator (DLA) that performs Deep Neural Network (DNN) operation based on the RISC-V Virtual Platform implemented in SystemC in order to enable rapid and diverse analysis of deep learning operations in an embedded device based on the RISC-V processor, which is a recently emerging embedded processor. The developed RISC-V based DLA prototype can analyze the hardware requirements according to the CNN data set through the configuration of the CNN DLA architecture, and it is possible to run RISC-V compiled software on the platform, can perform a real neural network model like Darknet. We performed the Darknet CNN model on the developed DLA prototype, and confirmed that computational overhead and inference errors can be analyzed with the DLA prototype developed by analyzing the DLA architecture for various data sets.


Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1465
Author(s):  
Taikyeong Jeong

When attempting to apply a large-scale database that holds the behavioral intelligence training data of deep neural networks, the classification accuracy of the artificial intelligence algorithm needs to reflect the behavioral characteristics of the individual. When a change in behavior is recognized, that is, a feedback model based on a data connection model is applied, an analysis of time series data is performed by extracting feature vectors and interpolating data in a deep neural network to overcome the limitations of the existing statistical analysis. Using the results of the first feedback model as inputs to the deep neural network and, furthermore, as the input values of the second feedback model, and interpolating the behavioral intelligence data, that is, context awareness and lifelog data, including physical activities, involves applying the most appropriate conditions. The results of this study show that this method effectively improves the accuracy of the artificial intelligence results. In this paper, through an experiment, after extracting the feature vector of a deep neural network and restoring the missing value, the classification accuracy was verified to improve by about 20% on average. At the same time, by adding behavioral intelligence data to the time series data, a new data connection model, the Deep Neural Network Feedback Model, was proposed, and it was verified that the classification accuracy can be improved by about 8 to 9% on average. Based on the hypothesis, the F (X′) = X model was applied to thoroughly classify the training data set and test data set to present a symmetrical balance between the data connection model and the context-aware data. In addition, behavioral activity data were extrapolated in terms of context-aware and forecasting perspectives to prove the results of the experiment.


2019 ◽  
Vol 8 (3) ◽  
pp. 4373-4378

The amount of data belonging to different domains are being stored rapidly in various repositories across the globe. Extracting useful information from the huge volumes of data is always difficult due to the dynamic nature of data being stored. Data Mining is a knowledge discovery process used to extract the hidden information from the data stored in various repositories, termed as warehouses in the form of patterns. One of the popular tasks of data mining is Classification, which deals with the process of distinguishing every instance of a data set into one of the predefined class labels. Banking system is one of the realworld domains, which collects huge number of client data on a daily basis. In this work, we have collected two variants of the bank marketing data set pertaining to a Portuguese financial institution consisting of 41188 and 45211 instances and performed classification on them using two data reduction techniques. Attribute subset selection has been performed on the first data set and the training data with the selected features are used in classification. Principal Component Analysis has been performed on the second data set and the training data with the extracted features are used in classification. A deep neural network classification algorithm based on Backpropagation has been developed to perform classification on both the data sets. Finally, comparisons are made on the performance of each deep neural network classifier with the four standard classifiers, namely Decision trees, Naïve Bayes, Support vector machines, and k-nearest neighbors. It has been found that the deep neural network classifier outperforms the existing classifiers in terms of accuracy


2017 ◽  
Vol 8 (4) ◽  
pp. 3192-3203 ◽  
Author(s):  
J. S. Smith ◽  
O. Isayev ◽  
A. E. Roitberg

We demonstrate how a deep neural network (NN) trained on a data set of quantum mechanical (QM) DFT calculated energies can learn an accurate and transferable atomistic potential for organic molecules containing H, C, N, and O atoms.


2021 ◽  
pp. 146808742110577
Author(s):  
Erdoğan Güner ◽  
Aliriza Kaleli ◽  
Kadir Bakirci ◽  
Mehmet Akif Ceviz

This study aims to determine the optimal injection strategy by predicting the performance and exhaust emission parameters of a four-cylinder CRDI engine under several operating conditions. The experimental determination procedure is challenging and expensive calibration task since it requires a high number of tests. Many studies have focused on a limited level of parameters. In this study, design of experiments technique and deep neural network (DNN) modeling are used together. The experimental data set for the model is created using Taguchi L16 and L32 orthogonal arrays. The DNN model is developed to predict [Formula: see text], [Formula: see text], HC, and CO emissions with speed, torque, injection timings and fuel quantities of each injection called as pilot1, pilot2, main, and post. In this way, it has become possible to evaluate the effects of a larger number of operating parameters in a wide range than the literature. The developed DNN model predicts the [Formula: see text], [Formula: see text], HC, and CO with R2 0.939, 0.943, 0.963, and 0.966, respectively. Additionally, RMSE and MAE values for the model are between 0.024 and 0.048. The proposed method compared with the conventional look-up table method performs better in reducing the complexity and cost of experiments and exploration of the effects of injection parameters on engine emission and performance characteristics in a wide engine operating range. In conclusion, until 2300 rpm at specified torque (90 Nm), it is found that 70% of fuel quantity should inject in main injection to minimize [Formula: see text] and [Formula: see text] emissions. The post injection quantity should be increased by reducing the amount of main injection from this operating condition on. Furthermore, it is observed that the ratios of pilot injection durations do not change with increasing engine speed, but quantity of first pilot injection is more than that of second pilot injection.


2020 ◽  
Vol 10 (14) ◽  
pp. 4849 ◽  
Author(s):  
Beom Kwon ◽  
Sanghoon Lee

With the advancement in pose estimation techniques, skeleton-based person identification has recently received considerable attention in many applications. In this study, a skeleton-based person identification method using a deep neural network (DNN) is investigated. In this method, anthropometric features extracted from the human skeleton sequence are used as the input to the DNN. However, training the DNN with insufficient training datasets makes the network unstable and may lead to overfitting during the training phase, causing significant performance degradation in the testing phase. To cope with a shortage in the dataset, we investigate novel data augmentation for skeleton-based person identification by utilizing the bilateral symmetry of the human body. To achieve this, augmented vectors are generated by sharing the anthropometric features extracted from one side of the human body with the other and vice versa. Thereby, the total number of anthropometric feature vectors is increased by 256 times, which enables the DNN to be trained while avoiding overfitting. The simulation results demonstrate that the average accuracy of person identification is remarkably improved up to 100% based on the augmentation on public datasets.


Sign in / Sign up

Export Citation Format

Share Document