scholarly journals Naringenin Regulates FKBP4/NR3C1/TMEM173 Signaling Pathway in Autophagy and Proliferation of Breast Cancer and Tumor-Infiltrating Dendritic Cell Maturation

Author(s):  
Hanchu Xiong ◽  
Zihan Chen ◽  
Baihua Lin ◽  
Cong Chen ◽  
Zhaoqing Li ◽  
...  

Abstract Background TMEM173 is a pattern recognition receptor detecting cytoplasmic nucleic acids and transmits cGAS related signals that activate host innate immune responses. It has also been found to be involved in tumor immunity and tumorigenesis. Methods Bc-GenExMiner, PROMO and STRING database were used for analyzing clinical features and interplays of FKBP4, TMEM173 and NR3C1. Transient transfection, western blotting, quantitative real-time PCR, luciferase reporter assay, immunofluorescence and nuclear and cytoplasmic fractionation were used for regulation of FKBP4, TMEM173 and NR3C1. Both knockdown and overexpression of FKBP4, TMEM173 and NR3C1 were used to analyze effects on autophagy and proliferation of breast cancer (BC) cells. Flow cytometry analysis, cytokine analysis and exosome isolation and identification were utilized to test tumor-infiltrating dendritic cell (TIDC) maturation. Results In this study, we firstly identified that FKBP4/NR3C1 axis was a novel negative regulator of TMEM173 in BC cells. The effect of FKBP4 appeared to be at the transcriptional level of TMEM173 since it could suppress the promoter activity of TMEM173, thereby affecting TMEM173 at mRNA and protein levels. Bioinformatics and in vitro experiments further demonstrated that FKBP4 regulated TMEM173 via regulating nuclear translocation of NR3C1. We then reported that naringenin, a flavonoid, could enhance autophagy and suppress proliferation of BC cells through the induction of TMEM173 in vitro and in vivo. Naringenin was also found to promote TIDC maturation through FKBP4/NR3C1/TMEM173 axis of both BC cells exosome and DC itself. Conclusion We demonstrated that naringenin could induce cell proliferation inhibition and cytoprotective autophagy of BC cells and enhance TIDC maturation, at least in part, though regulation of FKBP4/NR3C1/TMEM173 signaling pathway. Identification of FKBP4/NR3C1 axis as a novel TMEM173 regulator would provide insights for novel anti-tumor strategy against BC among tumor microenvironment.

2022 ◽  
Vol 12 ◽  
Author(s):  
Hanchu Xiong ◽  
Zihan Chen ◽  
Baihua Lin ◽  
Bojian Xie ◽  
Xiaozhen Liu ◽  
...  

NRF2 is an important regulatory transcription factor involved in tumor immunity and tumorigenesis. In this study, we firstly identified that FKBP4/NR3C1 axis was a novel negative regulator of NRF2 in human breast cancer (BC) cells. The effect of FKBP4 appeared to be at protein level of NRF2 since it could not suppress the expression of NRF2 at mRNA level. Bioinformatics analysis and in vitro experiments further demonstrated that FKBP4 regulated NRF2 via regulating nuclear translocation of NR3C1. We then reported that naringenin, a flavonoid, widely distributed in citrus and tomato, could suppress autophagy and proliferation of BC cells through FKBP4/NR3C1/NRF2 signaling pathway in vitro and in vivo. Naringenin was also found to promote dendritic cell (DC) differentiation and maturation through FKBP4/NR3C1/NRF2 axis. Therefore, our study found that naringenin could induce inhibition of autophagy and cell proliferation in BC cells and enhance DC differentiation and maturation, at least in part, though regulation of FKBP4/NR3C1/NRF2 signaling pathway. Identification of FKBP4/NR3C1/NRF2 axis would provide insights for novel anti-tumor strategy against BC among tumor microenvironment.


Author(s):  
Xuehui Wang ◽  
Changle Ji ◽  
Jiashu Hu ◽  
Xiaochong Deng ◽  
Wenfang Zheng ◽  
...  

Abstract Background Circular RNAs (circRNAs), a novel class of endogenous RNAs, have shown to participate in the development of breast cancer (BC). Hsa_circ_0005273 is a circRNA generated from several exons of PTK2. However, the potential functional role of hsa_circ_0005273 in BC remains largely unknown. Here we aim to evaluate the role of hsa_circ_0005273 in BC. Methods The expression level of hsa_circ_0005273 and miR-200a-3p were examined by RT-qPCR in BC tissues and cell lines. The effect of knocking down hsa_circ_0005273 in BC cell lines were evaluated by examinations of cell proliferation, migration and cell cycle. In addition, xenografts experiment in nude mice were performed to evaluate the effect of hsa_circ_0005273 in BC. RNA immunoprecipitation assay, RNA probe pull-down assay, luciferase reporter assay and fluorescence in situ hybridization were conducted to confirm the relationship between hsa_circ_0005273, miR-200a-3p and YAP1. Results Hsa_circ_0005273 is over-expressed in BC tissues and cell lines, whereas miR-200a-3p expression is repressed. Depletion of hsa_circ_0005273 inhibited the progression of BC cells in vitro and in vivo, while overexpression of hsa_circ_0005273 exhibited the opposite effect. Importantly, hsa_circ_0005273 upregulated YAP1 expression and inactivated Hippo pathway via sponging miR-200a-3p to promote BC progression. Conclusions Hsa_circ_0005273 regulates the miR-200a-3p/YAP1 axis and inactivates Hippo signaling pathway to promote BC progression, which may become a potential biomarker and therapeutic target.


2020 ◽  
Vol 29 ◽  
pp. 096368972093913
Author(s):  
Shujun Chen ◽  
Bo Li

In osteoarthritis (OA), the synthesis and decomposition of the extracellular matrix (ECM) are imbalanced. High expression levels of Wnt1-inducible signaling pathway protein 1 (WISP1) promote the synthesis of matrix metalloproteinases and induce the degradation of cartilage, which aggravates the OA. The aim of this study was to explore the role of miR-128-3p in the development of OA. In the present study, the expression of WISP1 and miR-128-3p in osteoarthritic tissues and chondrocytes was detected using quantitative reverse transcription PCR (RT-qPCR) and Western blotting. Then we predicted that WISP1 might be a potential target gene of miR-128-3p by TargetScan and verified using luciferase reporter gene assay. The effect of miR-128-3p or WISP1 on chondrocytes was evaluated by cell proliferation assay, apoptosis, and caspase-3 activity assay. To further reveal the molecular mechanisms of miR-128-3p in osteoarthritic development, the degradation of chondrocyte matrix and production of proinflammatory cytokines in osteoarthritic chondrocyte model were detected by ELISA. To mimic the osteoarthritic microenvironment in vitro studies, chondrocytes were stimulated with interleukin (IL)-1β, and then we found that the expression of miR-128-3p was downregulated. Overexpression of WISP1 inhibited the proliferation of chondrocytes, which induced apoptosis, degradation of chondrocyte matrix, production of proinflammatory cytokines, and activated the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. Then, we identified that miR-128-3p was a negative regulator of WISP1 by directly targeting its 3′-untranslated region (UTR). Moreover, the PI3K allosteric activator 740 Y-P abolished the inhibition of miR-128-3p in apoptosis, degradation of chondrocyte matrix, and inflammation. Our results showed that miR-128-3p targets WISP1 to regulate chondrocyte proliferation, apoptosis, degradation of chondrocyte matrix, and production of proinflammatory cytokines via the PI3K/Akt/NF-κB pathway, which plays a suppressed role in OA.


2021 ◽  
Author(s):  
Haofeng Liang ◽  
Lin Li ◽  
Jianye Tan ◽  
Bingsheng Yang ◽  
Shuang Zhu ◽  
...  

Abstract Background: Osteosarcoma (OS) is the most common malignant bone tumor in children and adolescents, and accumulating evidence has revealed that microRNAs (miRNAs) exert a crucial part in the progression of OS. Methods: GSE65071 from the GEO database was analyzed and miR-744-5p was found to be the lowest expressed miRNA. Real-time quantitative PCR (qRT-PCR), Western blotting (WB), colony formation assay, 5-Ethynyl-2-Deoxyuridine (EdU) incorporation assay and Transwell migration and invasion assay were performed to examine the effects of miR-744-5p in vitro, Luciferase-reporter assay was performed to detect the interactions between miR-744-5p and its specific target gene. Subcutaneous tumor-forming animal models and tail vein injection lung metastatic models were conducted in animal experiments to detect the effects of miR-744-5p in vivo. Results: miR-744-5p expression was down-regulated in OS cells and tissues. Higher expression of miR-744-5p was related with better clinical prognosis and lower malignancy degree of OS, including cell proliferation, migration and invasion in vitro and vivo. Transforming growth factor-β1 (TGFB1) was negatively regulated by miR-744-5p and could reverse the effects of miR-744-5p on OS proliferation, migration and invasion. The MAPK/ERK signaling pathway was involved in the miR-744-5p/TGFB1 axis. Conclusions: In general, this study suggests that miR-744-5p is a negative regulator of TGFB1, and suppresses OS progression and metastasis via MAPK/ERK signaling pathway.


2021 ◽  
Vol 17 (1) ◽  
pp. 64-77
Author(s):  
Xiangfei He ◽  
Yibo Wen ◽  
Qingwei Wang ◽  
Yan Wang ◽  
Guoxian Zhang ◽  
...  

Apigenin as a natural flavonoid product has been proved previously to play a renoprotective effect during ischemia/reperfusion injury (IRI), but the particular mechanisms involving the positive effects of apigenin remain totally unclear. The study investigated apigenin's roles and underlying biological mechanisms in IR-induced acute kidney injury (AKI). Thirty-six mice received a right nephrectomy and clamping of the left renal artery for 30 minutes, and then perfusion for 24 h. Apigenin was loaded onto a biodegradable polymer carrier (nanoparticle) to enhance its bioavailability. Mice were subjected to intraperitoneally injection with apigenin (5, 10 or 20 mg/kg) for 24 h before surgery. For in vitro experiments, mouse renal tubular epithelial cells (mRTECs) and miR-140-5p mimic/inhibitor transfected mRTECs were subjected to hypoxia/reoxygenation in the presence or absence of apigenin. In vitro, we uncovered that hypoxia/reoxygenation stimulation caused inflammatory injury in mRTECs. Apigenin reduced the hypoxia/reoxygenation-induced cell inflammatory injury and NF- B p65 nuclear translocation from cytoplasm and activation. Moreover, apigenin reduced hypoxia/reoxygenationtriggered miR-140-5p down-regulation. What's more, the luciferase reporter system revealed that miR-140-5p negatively regulates CXCL12, which is its direct target of action. CXCL12 exhibited an inhibitory effect on the apigenin-induced inactivation of NF- B signaling pathway. Furthermore, we observed that apigenin pretreatment attenuated the IR-triggered up-regulation of serum creatinine and blood urea nitrogen, elevation of pro-inflammatory cytokines secretion and tubular cell apoptosis, enhancement of CXCL12 and decline of miR-140-5p in vivo. Our studies show that apigenin protects against IR-triggered renal cell inflammatory injury in vivo and in vitro by miR-140-5p up-regulation and CXCL12 downregulation via quenching the NF- B pathway activation. Apigenin may be an encouraging therapeutic agent for patients with IR-associated kidney injury.


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Jingtao Li ◽  
Hailiang Wei ◽  
Yonggang Liu ◽  
Qian Li ◽  
Hui Guo ◽  
...  

Background/Aim. Curcumin exhibits anticancer effects against various types of cancer including hepatocellular carcinoma (HCC). miR-21 has been reported to be involved in the malignant biological properties of HCC. However, whether miR-21 plays a role in curcumin-mediated treatment of HCC is unknown. The purpose of this study was to identify the potential functions and mechanisms of miR-21 in curcumin-mediated treatment of HCC. Methods. The anticancer effects of curcumin were assessed in vivo and in vitro. The underlying mechanism of miR-21 in curcumin-mediated treatment of HCC was assessed by quantitative real-time PCR (RT-qPCR), western blot, and Dual-Luciferase Reporter assays. Results. The present study revealed that curcumin suppressed HCC growth in vivo and inhibited HCC cell proliferation and induced cell apoptosis in a dose-dependent manner in vitro. Meanwhile, the curcumin treatment can downregulate miR-21 expression, upregulate TIMP3 expression, and inhibit the TGF-β1/smad3 signaling pathway. miR-21 inhibition enhanced the effect of curcumin on cell proliferation inhibition, apoptosis, and TGF-β1/smad3 signaling pathway inhibition in HepG2 and HCCLM3 cells. It demonstrated that TIMP3 was a direct target gene of miR-21. Interestingly, the effect of miR-21 inhibition on cell proliferation, apoptosis, and TGF-β1/smad3 signaling pathway in HepG2 and HCCLM3 cells exposed to curcumin was attenuated by TIMP3 silencing. Conclusion. Taken together, the present study suggests that miR-21 is involved in the anticancer activities of curcumin through targeting TIMP3, and the mechanism possibly refers to the inhibition of TGF-β1/smad3 signaling pathway.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Qiudan Chen ◽  
Weifeng Wang ◽  
Shuying Chen ◽  
Xiaotong Chen ◽  
Yong Lin

AbstractRecently, pivotal functions of miRNAs in regulating common tumorigenic processes and manipulating signaling pathways in brain tumors have been recognized; notably, miR‐29a is closely associated with p53 signaling, contributing to the development of glioma. However, the molecular mechanism of the interaction between miR-29a and p53 signaling is still to be revealed. Herein, a total of 30 glioma tissues and 10 non-cancerous tissues were used to investigate the expression of miR‐29a. CCK-8 assay and Transwell assay were applied to identify the effects of miR-29a altered expression on the malignant biological behaviors of glioma cells in vitro, including proliferation, apoptosis, migration and invasion. A dual-luciferase reporter assay was used to further validate the regulatory effect of p53 or miR-29a on miR-29a or MDM2, respectively, at the transcriptional level. The results showed that miR-29a expression negatively correlated with tumor grade of human gliomas; at the same time it inhibited cell proliferation, migration, and invasion and promoted apoptosis of glioma cells in vitro. Mechanistically, miR-29a expression was induced by p53, leading to aberrant expression of MDM2 targeted by miR-29a, and finally imbalanced the activity of the p53-miR-29a-MDM2 feedback loop. Moreover, miR-29a regulating p53/MDM2 signaling sensitized the response of glioma cells to temozolomide treatment. Altogether, the study demonstrated a potential molecular mechanism in the tumorigenesis of glioma, while offering a possible target for treating human glioma in the future.


2021 ◽  
Vol 12 (8) ◽  
Author(s):  
Jiewei Lin ◽  
Zhiwei Xu ◽  
Junjie Xie ◽  
Xiaxing Deng ◽  
Lingxi Jiang ◽  
...  

AbstractAPOL1 encodes a secreted high-density lipoprotein, which has been considered as an aberrantly expressed gene in multiple cancers. Nevertheless, the role of APOL1 in the regulatory mechanisms of pancreatic cancer remains unknown and should be explored. We identified APOL1 was abnormally elevated in human pancreatic cancer tissues compared with that in adjacent tissues and was associated with poor prognosis. The effects of APOL1 in PC cell proliferation, cell cycle, and apoptosis was verified via functional in vitro and in vivo experiments. The results showed that knockdown of APOL1 significantly inhibited the proliferation and promoted apoptosis of pancreatic cancer. In addition, we identified APOL1 could be a regulator of NOTCH1 signaling pathway using bioinformatics tools, qRT-PCR, dual-luciferase reporter assay, and western blotting. In summary, APOL1 could function as an oncogene to promote proliferation and inhibit apoptosis through activating NOTCH1 signaling pathway expression in pancreatic cancer; therefore, it may act as a novel therapeutic target for pancreatic cancer.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Lei Wang ◽  
Yehui Zhou ◽  
Liang Jiang ◽  
Linlin Lu ◽  
Tiantian Dai ◽  
...  

Abstract Background Chemotherapeutic resistance is the main cause of clinical treatment failure and poor prognosis in triple-negative breast cancer (TNBC). There is no research on chemotherapeutic resistance in TNBC from the perspective of circular RNAs (circRNAs). Methods TNBC-related circRNAs were identified based on the GSE101124 dataset. Quantitative reverse transcription PCR was used to detect the expression level of circWAC in TNBC cells and tissues. Then, in vitro and in vivo functional experiments were performed to evaluate the effects of circWAC in TNBC. Results CircWAC was highly expressed in TNBC and was associated with worse TNBC patient prognosis. Subsequently, it was verified that downregulation of circWAC can increase the sensitivity of TNBC cells to paclitaxel (PTX) in vitro and in vivo. The expression of miR-142 was negatively correlated with circWAC in TNBC. The interaction between circWAC and miR-142 in TNBC cells was confirmed by RNA immunoprecipitation assays, luciferase reporter assays, pulldown assays, and fluorescence in situ hybridization. Mechanistically, circWAC acted as a miR-142 sponge to relieve the repressive effect of miR-142 on its target WWP1. In addition, the overall survival of TNBC patients with high expression of miR-142 was significantly better than that of patients with low expression of miR-142, and these results were verified in public databases. MiR-142 regulated the expression of WWP1 and the activity of the PI3K/AKT pathway. It was confirmed that WWP1 is highly expressed in TNBC and that the prognosis of patients with high WWP1 expression is poor. Conclusions CircWAC/miR-142/WWP1 form a competing endogenous RNA (ceRNA) network to regulate PI3K/AKT signaling activity in TNBC cells and affect the chemosensitivity of cells.


2021 ◽  
Author(s):  
Guiyan Jia ◽  
Xingyue Shao ◽  
Rui Zhao ◽  
Tao Zhang ◽  
Xiechen Zhou ◽  
...  

POL-P3b, as a promising dietary adjuvant for the DC vaccine of breast cancer, could induce DC maturation and the mechanism of action involved in the TLR4/MyD88/NF-κB signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document