scholarly journals Bifunctional Europium Doped SrTiO3 Ceramics with Energy Storage and Photoluminescence

Author(s):  
Bingjie Zhong ◽  
Chengyang Zuo ◽  
Chao Yang ◽  
Shilin Yang ◽  
Yun Li ◽  
...  

Abstract Rare-earth ion Eu 3+ was doped into SrTiO 3 ceramic to improve its dielectric energy storage properties and act as luminescence centres. Typically, SrTiO 3 ceramics doped with 0.2% Eu 3+ exhibit high breakdown strength up to 354 kV/cm and a relatively high recoverable energy density of 2.13 J/cm 3 . Compared to those of the undoped sample, the doped ceramic breakdown strength and recoverable energy density are enhanced by about 22% and 58%, respectively. The doping effect can be explained by the inhibition of the long-range movement of carriers. Moreover, the europium doped SrTiO 3 ceramic capacitor exhibits an excellent power density of 37 MW/cm 3 in an ultrafast discharge time of 25 nanoseconds at 200 kV/cm. Meanwhile, the Eu 3+ doped sample exhibits obvious red photoluminescence. The bifunctional ceramics offer an excellent prospect for energy storage and optical applications.

2021 ◽  
pp. 2150179
Author(s):  
Min Zhang ◽  
Chaoyong Deng

Single-perovskite lead-free BaTiO3 ferroelectric films were synthesized on Nb:SrTiO3 substrates by pulsed laser deposition. The microstructure, ferroelectric, electric-field breakdown strength, and energy-storage properties of films were investigated. The remnant polarization [Formula: see text] reached the higher values of 34.79 [Formula: see text]C/cm2. The recoverable energy-storage density [Formula: see text] is 12.30 J/cm3. The results also reveal that rapid thermal processing (RTP) enhances the ferroelectric and energy storage properties of the film by comparison with unannealed, and ferroelectric and energy storage properties exhibit a strong voltage dependence.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3585
Author(s):  
Xueqing Bi ◽  
Lujia Yang ◽  
Zhen Wang ◽  
Yanhu Zhan ◽  
Shuangshuang Wang ◽  
...  

Three-dimensional BaTiO3 (3D BT)/polyvinylidene fluoride (PVDF) composite dielectrics were fabricated by inversely introducing PVDF solution into a continuous 3D BT network, which was simply constructed via the sol-gel method using a cleanroom wiper as a template. The effect of the 3D BT microstructure and content on the dielectric and energy storage properties of the composites were explored. The results showed that 3D BT with a well-connected continuous network and moderate grain sizes could be easily obtained by calcining a barium source containing a wiper template at 1100 °C for 3 h. The as-fabricated 3D BT/PVDF composites with 21.1 wt% content of 3D BT (3DBT–2) exhibited the best comprehensive dielectric and energy storage performances. An enhanced dielectric constant of 25.3 at 100 Hz, which was 2.8 times higher than that of pure PVDF and 1.4 times superior to the conventional nano–BT/PVDF 25 wt% system, was achieved in addition with a low dielectric loss of 0.057 and a moderate dielectric breakdown strength of 73.8 kV·mm−1. In addition, the composite of 3DBT–2 exhibited the highest discharge energy density of 1.6 × 10−3 J·cm−3 under 3 kV·mm−1, which was nearly 4.5 times higher than that of neat PVDF.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5742
Author(s):  
Vignaswaran Veerapandiyan ◽  
Federica Benes ◽  
Theresa Gindel ◽  
Marco Deluca

Electrical energy storage systems (EESSs) with high energy density and power density are essential for the effective miniaturization of future electronic devices. Among different EESSs available in the market, dielectric capacitors relying on swift electronic and ionic polarization-based mechanisms to store and deliver energy already demonstrate high power densities. However, different intrinsic and extrinsic contributions to energy dissipations prevent ceramic-based dielectric capacitors from reaching high recoverable energy density levels. Interestingly, relaxor ferroelectric-based dielectric capacitors, because of their low remnant polarization, show relatively high energy density and thus display great potential for applications requiring high energy density properties. In this study, some of the main strategies to improve the energy density properties of perovskite lead-free relaxor systems are reviewed, including (i) chemical modification at different crystallographic sites, (ii) chemical additives that do not target lattice sites, and (iii) novel processing approaches dedicated to bulk ceramics, thick and thin films, respectively. Recent advancements are summarized concerning the search for relaxor materials with superior energy density properties and the appropriate choice of both composition and processing routes to match various applications’ needs. Finally, future trends in computationally-aided materials design are presented.


2020 ◽  
Vol 8 (2) ◽  
pp. 591-601 ◽  
Author(s):  
Di Hu ◽  
Zhongbin Pan ◽  
Xiang Zhang ◽  
Haoran Ye ◽  
Zhouyang He ◽  
...  

The 0.65(NBT-BKT)–0.35SBT ceramic possesses an ultra-high recoverable energy storage density (Wrec ∼ 4.06 J cm−3) and maintains a relatively high efficiency (η = ∼87.3%).


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Dou Zhang ◽  
Xuefan Zhou ◽  
James Roscow ◽  
Kechao Zhou ◽  
Lu Wang ◽  
...  

Abstract There is a growing need for high energy density capacitors in modern electric power supplies. The creation of nanocomposite systems based on one-dimensional nanofibers has shown great potential in achieving a high energy density since they can optimize the energy density by exploiting both the high permittivity of ceramic fillers and the high breakdown strength of the polymer matrix. In this paper, BaTiO3 nanofibers (NFs) with different aspect ratio were synthesized by a two-step hydrothermal method and the permittivity and energy storage of the P(VDF-HFP) nanocomposites were investigated. It is found that as the BaTiO3 NF aspect ratio and volume fraction increased the permittivity and maximum electric displacement of the nanocomposites increased, while the breakdown strength decreased. The nanocomposites with the highest aspect ratio BaTiO3 NFs exhibited the highest energy storage density at the same electric field. However, the nanocomposites with the lowest aspect ratio BaTiO3 NFs achieved the maximal energy storage density of 15.48 J/cm3 due to its higher breakdown strength. This contribution provides a potential route to prepare and tailor the properties of high energy density capacitor nanocomposites.


2014 ◽  
Vol 633 ◽  
pp. 422-426
Author(s):  
Jun Song ◽  
Guo Hua Chen ◽  
Yu Tang

SrO–BaO–Nb2O5–B2O3system glass-ceramics with Gd2O3/BaF2addition have been prepared by controlled crystallization method. The effect of Gd2O3/BaF2addition on the phase evolution, dielectric properties and energy storage properties has been investigated. The addition of Gd2O3/BaF2to the glass-ceramics changes the dielectric property and energy storage density. The glass-ceramics with 0.5 mol% Gd2O3and 4.5mol% BaF2heat treated at 850°C/3h possesses a dielectric constant of 125, a breakdown strength of 1055 kV/mm and energy storage density of 6.16J/cm3, which are promising materials for high energy storage density dielectrics.


2020 ◽  
Vol 8 (11) ◽  
pp. 3784-3794 ◽  
Author(s):  
Junpeng Shi ◽  
Xiuli Chen ◽  
Xu Li ◽  
Jie Sun ◽  
Congcong Sun ◽  
...  

The development and use of high-performance and environmentally friendly energy storage capacitors are urgently demanded.


2019 ◽  
Vol 7 (25) ◽  
pp. 15198-15206 ◽  
Author(s):  
Xin Huang ◽  
Xin Zhang ◽  
Guang-Kun Ren ◽  
Jianyong Jiang ◽  
Zhenkang Dan ◽  
...  

In situ synthesized Ag nanodots enhances electrostatic energy storage by tuning dipoles.


2019 ◽  
Vol 7 (14) ◽  
pp. 4072-4078 ◽  
Author(s):  
Zhongbin Pan ◽  
Di Hu ◽  
Yang Zhang ◽  
Jinjun Liu ◽  
Bo Shen ◽  
...  

The 0.94(BNT–BST)–0.06KNN ceramic possesses an excellent stored energy storage density (Ws = ∼3.13 J cm−3), a recoverable energy storage density (Wr = ∼2.65 J cm−3), and maintains a relatively high efficiency (η ∼ 84.6%).


Sign in / Sign up

Export Citation Format

Share Document