scholarly journals Construction of An Immune-Related CeRNA Network as a Prognostic Signature in Bladder Cancer

2020 ◽  
Author(s):  
Ran-ran Zhou ◽  
Hu Tian ◽  
Cheng Yang ◽  
Fan Peng ◽  
Hao-yu Yuan ◽  
...  

Abstract Background: Immunotherapy has been proved to be effective for bladder cancer (BLCA). However, the molecular network involved in BLCA tumor immune response remains unclear. This study aims to construct an immune-related ceRNA network and to identify the prognostic value. Methods: Based on The Cancer Genome Atlas (TCGA), we used single-sample gene set enrichment analysis (ssGSEA), weighted gene co-expression network analysis (WGCNA) to determine immune-related mRNA, lncRNA and miRNA. Then least absolute shrinkage, and selection operator (LASSO) and Cox regression were performed to identify the mRNAs with high prognostic value, and accordingly, the risk score was calculated. Internal and external validation were performed both in TCGA and GSE13507 with Kaplan-Meier (KM) survival and Receiver Operating Characteristic (ROC) curve analysis. Using the immune-related mRNA, lncRNA and miRNA, a ceRNA network was established via MiRcode, starBase, miRDB, miRTarBase and TargetScan. Besides, we also explore the relationship between the risk score and immune cell infiltration via CIBERSORT algorithm. Results: 5 mRNAs (PCGF3, FASN, DPYSL2, TGFBI and NTF3) were ultimately identified, and KM survival analysis displayed the 5-mRNA risk signature could predict the prognosis of BLCA with high efficacy both in TCGA (p = 1.006e-13) and GSE13507 (p = 7.759e-04). Using miRNA targeting molecular prediction database, an immune-related ceRNA network, including 5 mRNAs, 24 miRNAs and 86 lncRNAs, was constructed. Memory B cells, activated dendritic cells, and regulatory T cells infiltration into tumors were negatively correlated with risk score, while the infiltration levels of macrophages M0, M1 and M2 were positively correlated with risk score. Conclusion: This study helped to better understand the molecular mechanisms of tumor immune response from the view of ceRNA hypothesis, and provided a novel prognostic signature for bladder cancer.

2021 ◽  
Vol 22 (12) ◽  
pp. 6644
Author(s):  
Xupeng Zang ◽  
Ting Gu ◽  
Wenjing Wang ◽  
Chen Zhou ◽  
Yue Ding ◽  
...  

Due to the high rate of spontaneous abortion (SAB) in porcine pregnancy, there is a major interest and concern on commercial pig farming worldwide. Whereas the perturbed immune response at the maternal–fetal interface is an important mechanism associated with the spontaneous embryo loss in the early stages of implantation in porcine, data on the specific regulatory mechanism of the SAB at the end stage of the implantation remains scant. Therefore, we used high-throughput sequencing and bioinformatics tools to analyze the healthy and arresting endometrium on day 28 of pregnancy. We identified 639 differentially expressed lncRNAs (DELs) and 2357 differentially expressed genes (DEGs) at the end stage of implantation, and qRT-PCR was used to verify the sequencing data. Gene set variation analysis (GSVA), gene set enrichment analysis (GSEA), and immunohistochemistry analysis demonstrated weaker immune response activities in the arresting endometrium compared to the healthy one. Using the lasso regression analysis, we screened the DELs and constructed an immunological competitive endogenous RNA (ceRNA) network related to SAB, including 4 lncRNAs, 11 miRNAs, and 13 genes. In addition, Blast analysis showed the applicability of the constructed ceRNA network in different species, and subsequently determined HOXA-AS2 in pigs. Our study, for the first time, demonstrated that the SAB events at the end stages of implantation is associated with the regulation of immunobiological processes, and a specific molecular regulatory network was obtained. These novel findings may provide new insight into the possibility of increasing the litter size of sows, making pig breeding better and thus improving the efficiency of animal husbandry production.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Chengquan Shen ◽  
Jing Liu ◽  
Jirong Wang ◽  
Xiaokun Yang ◽  
Haitao Niu ◽  
...  

PTPN6 (protein tyrosine phosphatase nonreceptor type 6), a tyrosine phosphatase, is known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. Previous studies have demonstrated that PTPN6 expression is relatively elevated in several malignancies. However, the role of PTPN6 in bladder cancer (BC) remains unclear. The purpose of this study was to explore the prognostic value of PTPN6 in BC. RNA-seq data from The Cancer Genome Atlas (TCGA) was used to identify the expression level of PTPN6 in BC. The relationship between clinical pathologic features and PTPN6 were analyzed with the Wilcoxon signed-rank test. The prognostic and predictive value of PTPN6 was evaluated by survival analysis and nomogram. Gene Set Enrichment Analysis (GSEA) was conducted to explore the potential molecular mechanisms of PTPN6 in BC. Finally, Tumor Immune Estimation Resource (TIMER) was applied to investigate the relationship between PTPN6 and immune cell infiltration in the tumor microenvironment. Results indicated that PTPN6 was overexpressed in BC tissues compared with normal bladder tissues and was significantly correlated with grade, stage, T, and N. Survival analysis showed that low expression of PTPN6 was significantly related to the poor overall survival (OS) in BC patients. Coexpression analysis showed that PTPN6 and TNFRSF14 (Tumor necrosis factor receptor superfamily member 14) have a close correlation in BC. GSEA showed that multiple cancer-associated signaling pathways are differentially enriched in the PTPN6 high expression phenotype. Moreover, the expression level of PTPN6 was positively associated with the infiltration of B cells, CD4+T cells, dendritic cells, and neutrophils and negatively associated with CD8+ T cells and macrophages in BC. In conclusion, we identified that PTPN6 may be a novel prognostic biomarker in BC based on the TCGA database. Further clinical trials are needed to confirm our observations and mechanisms underlying the prognostic value of PTPN6 in BC also deserve further experimental exploration.


2021 ◽  
Author(s):  
Yanjia Hu ◽  
Jing Zhang ◽  
Jing Chen

Abstract Background Hypoxia-related long non-coding RNAs (lncRNAs) have been proven to play a role in multiple cancers and can serve as prognostic markers. Lower-grade gliomas (LGGs) are characterized by large heterogeneity. Methods This study aimed to construct a hypoxia-related lncRNA signature for predicting the prognosis of LGG patients. Transcriptome and clinical data of LGG patients were obtained from The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA). LGG cohort in TCGA was chosen as training set and LGG cohorts in CGGA served as validation sets. A prognostic signature consisting of fourteen hypoxia-related lncRNAs was constructed using univariate and LASSO Cox regression. A risk score formula involving the fourteen lncRNAs was developed to calculate the risk score and patients were classified into high- and low-risk groups based on cutoff. Kaplan-Meier survival analysis was used to compare the survival between two groups. Cox regression analysis was used to determine whether risk score was an independent prognostic factor. A nomogram was then constructed based on independent prognostic factors and assessed by C-index and calibration plot. Gene set enrichment analysis and immune cell infiltration analysis were performed to uncover further mechanisms of this lncRNA signature. Results LGG patients with high risk had poorer prognosis than those with low risk in both training and validation sets. Recipient operating characteristic curves showed good performance of the prognostic signature. Univariate and multivariate Cox regression confirmed that the established lncRNA signature was an independent prognostic factor. C-index and calibration plots showed good predictive performance of nomogram. Gene set enrichment analysis showed that genes in the high-risk group were enriched in apoptosis, cell adhesion, pathways in cancer, hypoxia etc. Immune cells were higher in high-risk group. Conclusion The present study showed the value of the 14-lncRNA signature in predicting survival of LGGs and these 14 lncRNAs could be further investigated to reveal more mechanisms involved in gliomas.


2021 ◽  
Vol 11 ◽  
Author(s):  
Mu-xing Li ◽  
Hang-yan Wang ◽  
Chun-hui Yuan ◽  
Zhao-lai Ma ◽  
Bin Jiang ◽  
...  

IntroductionMacrophage phenotype switch plays a vital role in the progression of malignancies. We aimed to build a prognostic signature by exploring the expression pattern of macrophage phenotypic switch related genes (MRGs) in the Cancer Genome Atlas (TCGA)—pancreatic adenocarcinoma (PAAD), Genotype-Tissue Expression (GTEx)-Pancreas, and Gene Expression Omnibus (GEO) databases.MethodsWe identified the differentially expressed genes between the PAAD and normal tissues. We used single factor Cox proportional risk regression analysis, Least Absolute Shrinkage and Selection Operator (LASSO) analysis, and multivariate Cox proportional hazard regression analysis to establish the prognosis risk score by the MRGs. The relationships between the risk score and immune landscape, “key driver” mutations and clinicopathological factors were also analyzed. Gene-set enrichment analysis (GSEA) analysis was also performed.ResultsWe detected 198 differentially expressed MRGs. The risk score was constructed based on 9 genes (KIF23, BIN1, LAPTM4A, ERAP2, ATP8B2, FAM118A, RGS16, ELMO1, RAPGEFL1). The median overall survival time of patients in the low-risk group was significantly longer than that of patients in the high-risk group (P < 0.001). The prognostic value of the risk score was validated in GSE62452 dataset. The prognostic performance of nomogram based on risk score was superior to that of TNM stage. And GSEA analysis also showed that the risk score was closely related with P53 signaling pathway, pancreatic cancer and T cell receptor signaling pathway. qRT-PCR assay showed that the expressions of the 9 MRGs in PDAC cell lines were higher than those in human pancreatic ductal epithelium cell line.ConclusionsThe nine gene risk score could be used as an independent prognostic index for PAAD patients. Further studies validating the prognostic value of the risk score are warranted.


2020 ◽  
Author(s):  
Peng Wang ◽  
Kai Huang ◽  
Miaojing Wu ◽  
Qing Hu ◽  
Chuming Tao ◽  
...  

Abstract Background: Glioma is the most common primary intracranial tumor, accounting for the vast majority of intracranial malignant tumors. Aberrant expression of RNA:5-methylcytosine(m5C) methyltransferases has recently been the focus of research relating to the occurrence and progression of tumors. However, the prognostic value of RNA:m5C methyltransferases in glioma remains unclear. This study investigated RNA: m5C methyltransferase expression and defined its clinicopathological signature and prognostic value in gliomas. Methods: We systematically studied the RNA-sequence data of RNA:m5C methyltransferases underlying gliomas in the Chinese Glioma Genome Atlas (CGGA) and The Cancer Genome Atlas (TCGA) datasets and identified different subtypes using Consensus clustering analysis. Gene Ontology (GO) and Gene Set Enrichment analysis (GSEA) was used to annotate the function of these genes. Univariate Cox regression and the least absolute shrinkage and selection operator (LASSO) Cox regression algorithm analyses were performed to construct the risk score model. Kaplan-Meier method and Receiver operating characteristic (ROC) curves were used to assess the overall survival of glioma patients. Additionally, Cox proportional regression model analysis was developed to address the connections between the risk scores and clinical factors. Results: Consensus clustering of RNA:m5C methyltransferases identified three clusters of gliomas with different prognostic and clinicopathological features. Meanwhile, Functional annotations demonstrated that RNA:m5C methyltransferases were significantly associated with the malignant progression of gliomas. Thereafter, five RNA:m5C methyltransferase genes were screened to construct a risk score model which can be used to predict not only overall survival but also clinicopathological features in gliomas. ROC curves revealed the significant prognostic ability of this signature. In addition, Multivariate Cox regression analyses indicated that the risk score was an independent prognostic factor for glioma outcome. Conclusion: We demonstrated the role of RNA:m5C methyltransferases in the initiation and progression of glioma. We have expanded on the understanding of the molecular mechanism involved, and provided a unique approach to predictive biomarkers and targeted therapy.


2021 ◽  
Author(s):  
Yujie Shen ◽  
Qiang Huang ◽  
Yifan Zhang ◽  
Chi-Yao Hsueh ◽  
Liang Zhou

Abstract Background A growing body of evidence has suggested the involvement of metabolism in the occurrence and development of tumors. But the link between metabolism and laryngeal squamous cell carcinoma (LSCC) has rarely been reported. This study seeks to understand and explain the role of metabolic biomarkers in predicting the prognosis of LSCC. Methods We identified the differentially expressed metabolism-related genes (MRGs) through RNA-seq data of TCGA (The Cancer Genome Atlas) and GSEA (Gene set enrichment analysis). After the screening of protein-protein interaction (PPI), hub MRGs were analyzed by least absolute shrinkage and selection operator (LASSO) and Cox regression analyses to construct a prognostic signature. Kaplan–Meier survival analysis and the receiver operating characteristic (ROC) was applied to verify the effectiveness of the prognostic signature in four cohorts (TCGA cohort, GSE27020 cohort, TCGA-sub1 cohort and TCGA-sub2 cohort). The expressions of the hub MRGs in cell lines and clinical samples were verified by quantitative reverse transcriptase PCR (qRT-PCR). The immunofluorescence staining of the tissue microarray (TMA) was carried out to further verify the reliability and validity of the prognostic signature. Cox regression analysis was then used to screen for independent prognostic factors of LSCC and a nomogram was constructed based on the results. Results Among the 180 differentially expressed MRGs, 14 prognostic MRGs were identified. A prognostic signature based on two MRGs (GPT and SMS) was then constructed and verified via internal and external validation cohorts. Compared to the adjacent normal tissues, SMS expression was higher while GPT expression was lower in LSCC tissues, indicating poorer outcomes. The risk score proved the prognostic signature as an independent risk factor for LSCC in both internal and external validation cohorts. A nomogram based on these results was developed for clinical application. Conclusions Differentially expressed MRGs were found and proven to be related to the prognosis of LSCC. We constructed a novel prognostic signature based on MRGs in LSCC for the first time and verified via different cohorts from both databases and clinical samples. A nomogram based on this prognostic signature was developed.


2021 ◽  
Vol 11 ◽  
Author(s):  
Zaisheng Ye ◽  
Miao Zheng ◽  
Yi Zeng ◽  
Shenghong Wei ◽  
He Huang ◽  
...  

Patients with advanced stomach adenocarcinoma (STAD) commonly show high mortality and poor prognosis. Increasing evidence has suggested that basic metabolic changes may promote the growth and aggressiveness of STAD; therefore, identification of metabolic prognostic signatures in STAD would be meaningful. An integrative analysis was performed with 407 samples from The Cancer Genome Atlas (TCGA) and 433 samples from Gene Expression Omnibus (GEO) to develop a metabolic prognostic signature associated with clinical and immune features in STAD using Cox regression analysis and least absolute shrinkage and selection operator (LASSO). The different proportions of immune cells and differentially expressed immune-related genes (DEIRGs) between high- and low-risk score groups based on the metabolic prognostic signature were evaluated to describe the association of cancer metabolism and immune response in STAD. A total of 883 metabolism-related genes in both TCGA and GEO databases were analyzed to obtain 184 differentially expressed metabolism-related genes (DEMRGs) between tumor and normal tissues. A 13-gene metabolic signature (GSTA2, POLD3, GLA, GGT5, DCK, CKMT2, ASAH1, OPLAH, ME1, ACYP1, NNMT, POLR1A, and RDH12) was constructed for prognostic prediction of STAD. Sixteen survival-related DEMRGs were significantly related to the overall survival of STAD and the immune landscape in the tumor microenvironment. Univariate and multiple Cox regression analyses and the nomogram proved that a metabolism-based prognostic risk score (MPRS) could be an independent risk factor. More importantly, the results were mutually verified using TCGA and GEO data. This study provided a metabolism-related gene signature for prognostic prediction of STAD and explored the association between metabolism and the immune microenvironment for future research, thereby furthering the understanding of the crosstalk between different molecular mechanisms in human STAD. Some prognosis-related metabolic pathways have been revealed, and the survival of STAD patients could be predicted by a risk model based on these pathways, which could serve as prognostic markers in clinical practice.


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3685
Author(s):  
Haoyu Ren ◽  
Jiang Zhu ◽  
Haochen Yu ◽  
Alexandr Bazhin ◽  
Christoph Westphalen ◽  
...  

Increasing evidence indicates that angiogenesis is crucial in the development and progression of gastric cancer (GC). This study aimed to develop a prognostic relevant angiogenesis-related gene (ARG) signature and a nomogram. The expression profile of the 36 ARGs and clinical information of 372 GC patients were extracted from The Cancer Genome Atlas (TCGA). Consensus clustering was applied to divide patients into clusters 1 and 2. Least absolute shrinkage and selection operator (LASSO) Cox regression analyses were used to identify the survival related ARGs and establish prognostic gene signatures, respectively. The Asian Cancer Research Group (ACRG) (n = 300) was used for external validation. Risk score of ARG signatures was calculated, and a prognostic nomogram was developed. Gene set enrichment analysis of the ARG model risk score was performed. Cluster 2 patients had more advanced clinical stage and shorter survival rates. ARG signatures carried prognostic relevance in both cohorts. Moreover, ARG-risk score was proved as an independent prognostic factor. The predictive value of the nomogram incorporating the risk score and clinicopathological features was superior to tumor, lymph node, metastasis (TNM) staging. The high-risk score group was associated with several cancer and metastasis-related pathways. The present study suggests that ARG-based nomogram could serve as effective prognostic biomarkers and allow a more precise risk stratification.


2020 ◽  
Author(s):  
Dan Yang ◽  
Yang He ◽  
Bo Wu ◽  
Yan Deng ◽  
Ruxi Liu ◽  
...  

Abstract Background: Lung adenocarcinoma (LUAD) is the most common histological subtype of lung cancer worldwide. Until now, the molecular mechanisms underlying LUAD progression have not been fully explained. This study aimed to identify a competing endogenous RNA (ceRNA) network in LUAD.Methods: Differentially expressed lncRNAs (DELs), miRNAs (DEMs), and mRNAs (DEGs) were identified from The Cancer Genome Atlas (TCGA) database with a |log2FC| > 1.0 and a false discovery rate (FDR) < 0.05. Then, these DELs, DEMs, and DEGs were used to construct the initial ceRNA network. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), protein-protein interaction (PPI) network, and survival analyses were performed to analyse these DEGs involved in the ceRNA network. Subsequently, the drug-gene interaction database (DGIdb) was utilized to select candidate LUAD drugs interacting with significant DEGs. Then, lasso-penalized Cox regression and multivariate Cox regression models were used to construct the risk score system. Kaplan-Meier (K-M) survival curves and receiver operating characteristic (ROC) curves were utilized to validate the reliability of the risk score system. Finally, based on the correlations between DELs and DEGs involved in the risk score system, the final ceRNA network was identified. Meanwhile, the GEPIA2 database and immunohistochemical (IHC) results were utilized to validate the expression levels of selected DEGs. GEPIA2 was further used to verify the correlations between DEGs and DELs.Results: A total of 340 DELs, 29 DEMs, and 218 DEGs were selected to construct the initial ceRNA network. Functional enrichment analyses indicated that 218 DEGs were significantly enriched in the GO terms “nucleoplasm”, “transcription factor complex”, “protein binding”, and “metal ion binding”, whereas these DEGs were associated with the KEGG pathway terms “microRNAs in cancer”, “pathways in cancer”, “cell cycle”, “HTLV-1 infection”, and the “PI3K-Akt signalling pathway”. K-M survival analysis of all differentially expressed genes involved in the ceRNA network identified 24 DELs, 4 DEMs, and 29 DEGs, all of which were significantly correlated with LUAD progression (P < 0.05). Furthermore, 15 LUAD drugs interacting with 29 DEGs were selected. After lasso-penalized Cox regression and multivariate Cox regression modelling, 4 DEGs, PRKCE, DLC1, LATS2, and DPY19L1, were incorporated into the risk score system. The area under the curve (AUC) values of the time-dependent ROC curves at 3 years and 5 years were both higher than 0.5. Finally, the correlation coefficients between these 4 DEGs and their corresponding DELs involved in the ceRNA network suggested that there were 2 DEL-DEG pairs, NAV2-AS2 – PRKCE (r = 0.430, P < 0.001) and NAV2-AS2 – LATS2 (r = 0.338, P < 0.001). Considering the previously constructed ceRNA network, NAV2-AS2 – mir-31 – PRKCE and NAV2-SA2 – mir-31 – LATS2 were identified.Conclusions: The lncRNA-miRNA-mRNA ceRNA network plays an essential role in LUAD. These results may improve our understanding and provide novel mechanistic insights to explore diagnostics, tumourigenesis, prognosis, and therapeutic drugs for LUAD patients.


Author(s):  
Zhiwen Xie ◽  
Lei Wu ◽  
Shan Hua ◽  
Yongqing Zhang ◽  
Fei Shi ◽  
...  

Clear cell renal cell carcinomas (ccRCCs) are highly immune infiltrates, and many of them respond to immunotherapy with checkpoint inhibitors including anti-PD-L1 or anti-PD1 agents. However, the effect of immune genes on clinical outcomes in ccRCCs has not been fully studied. Here, we show in this study that an immune-associated gene panel has a prognostic value for clear cell renal cell carcinomas. We performed single-sample gene set enrichment analysis (ssGSEA) and cell type identification by estimating subsets of RNA transcripts (CIBERSORT) algorithms on patient-matched normal renal and RCC tissues to characterize two immunophenotypes and immunological characteristic subpopulations. Furthermore, LASSO Cox regression was applied to develop a novel prognosis-associated model for ccRCC patients based on an immune-gene panel. The results were verified by the Gene Expression Omnibus (GEO) dataset and coordinated with the clinicopathological characteristics of ccRCCs, along with genomic signatures. Finally, based on the above perspectives, we generated a nomogram with a high prognostic efficiency for ccRCC patients. Overall, this study offers a unique perspective that can contribute to improving the accuracy of prognosis prediction and treatment with immunotherapy.


Sign in / Sign up

Export Citation Format

Share Document