scholarly journals Bio-Sorption for Effective Removal of Chromium (VI) from Wastewater Using Moringa Stenopetala Seed Powder (MSSP) and Banana Peel Powder (BPP)

2020 ◽  
Author(s):  
Tolera Seda Badessa ◽  
Esaya Wakuma ◽  
Ali Mohammed

Abstract Chromium is an extremely toxic heavy metal that causes severe environmental and health problems. Therefore, the aim of this study was to remove chromium ions from wastewater by using cost effective and environmentally friendly bio-sorbents; (MSSP) and (BPP) and to evaluate adsorption capacities of the bio-sorbents. FT-IR characterization of the adsorbents showed that there was a change in the functional groups of the structure of both adsorbents before and after the adsorption processes confirming that there was effective adsorption of chromium on both adsorbents. Adsorption experiments were carried out as batch studies at different contact times, pH, adsorbent dose, initial metal concentration and temperature. Results showed maximum removal efficiency for Cr (VI) at 120 minutes contact time, adsorbent dose of 20 g/L and pH 2 by MSSP and pH 4 by BPP. Percentage removal of Cr(VI) increased with increasing adsorbent dose( from 5g/L to 20 g/L) and contact time (from 60 min to 120 min). Freundlich isotherm model showed a better fit to the equilibrium data than the Langmuir model.The result of thermodynamic parameters showed negative values of ΔGo and ΔHo confirming spontaneous and exothermic nature of the sorption of Cr(VI) ion onto both adsorbents. A positive value of ΔSo indicates the increase in randomness of Cr(VI) ion at the solid-liquid interface of the adsorbents during the sorption process.The kinetics of adsorption for chromium was well represented by pseudo-second order kinetic model and the calculated equilibrium sorption capacity of the model showed good agreement with the sorption capacity obtained from experimental results.

2020 ◽  
Author(s):  
Tolera Seda Badessa ◽  
Esayas Wakuma ◽  
Ali Mohammed Yimer

Abstract Chromium is an extremely toxic metal in the form of Cr (VI) that causes severe environmental and health problems. Therefore, the aim of this study was to remove chromium ions from wastewater by using cost effective and environmentally friendly bio-sorbents; Moringa stenopetala Seed Powder (MSSP), and Banana Peel Powder (BPP) and to evaluate its adsorption capacities as bio-sorbents. FT-IR characterization of the adsorbents showed that there was a change in the functional groups of the structure of both adsorbents before and after the adsorption that might be due to the adsorption processes taken place on the surface of adsorbent. Adsorption experiments were carried out as batch studies with different contact times, pH, adsorbent dose, initial metal ion concentration, and temperature. Results showed maximum removal efficiency for Cr (VI) at 120 minutes contact time, adsorbent dose of 20 g/L and pH 2 by MSSP and pH 4 by BPP. The percentage removal of Cr(VI) increased with increasing adsorbent dose( from 5g/L to 20 g/L) and contact time (from 60 min to 120 min). Freundlich isotherm model showed a better fit to the equilibrium data than the Langmuir model. The kinetics of adsorption for chromium was well represented by pseudo-second order kinetic model and the calculated equilibrium sorption capacity of the model showed good agreement with the sorption capacity obtained from Experimental results.


BMC Chemistry ◽  
2020 ◽  
Vol 14 (1) ◽  
Author(s):  
Tolera Seda Badessa ◽  
Esayas Wakuma ◽  
Ali Mohammed Yimer

Abstract Chromium is an extremely toxic metal in the form of Cr(VI) that causes severe environmental and health problems. Therefore, the aim of this study was to remove chromium ions from wastewater by using cost effective and environmentally friendly bio-sorbents; Moringa stenopetala seed powder (MSSP), and banana peel powder (BPP) and to evaluate its adsorption capacities as bio-sorbents. FT-IR characterization of the adsorbents showed that there was a change in the functional groups of the structure of both adsorbents before and after the adsorption that might be due to the adsorption processes taken place on the surface of adsorbent. Adsorption experiments were carried out as batch studies with different contact times, pH, adsorbent dose, initial metal ion concentration, and temperature. Results showed maximum removal efficiency for Cr(VI) at 120 min contact time, adsorbent dose of 20 g/L and pH 2 by MSSP and pH 4 by BPP. The percentage removal of Cr(VI) increased with increasing adsorbent dose (from 5 to 20 g/L) and contact time (from 60 to 120 min). Freundlich isotherm model showed a better fit to the equilibrium data than the Langmuir model. The kinetics of adsorption for chromium was well represented by pseudo-second order kinetic model and the calculated equilibrium sorption capacity of the model showed good agreement with the sorption capacity obtained from experimental results.


Author(s):  
Donald T. Kukwa ◽  
Peter A. Adie ◽  
Rose E. Kukwa ◽  
Paula D. Kungur

Removal of Pb (II) ion from aqueous solution using Hymenoptera sphecidae (mud-wasp) nest was investigated using a batch process. The effect of pH, contact time and adsorbent dose were also investigated. The result showed that the adsorption of Pb (II) ion onto mud-wasp nest was dependent on pH, contact time and adsorbent dose. Adsorption patterns were analysed in terms of three bi-parameter isotherms of Langmuir, Freundlich and Temkin. Freundlich isotherm gave the best fit to the adsorption data with a correlation coefficient of 0.992, while monolayer sorption capacity yielded 41.667 mg/g. Lagergren’s pseudo first-order and pseudo second-order kinetic models were used to test the adsorption kinetics. The kinetic data were well described by the pseudo second-order kinetic model, suggesting that the process was chemisorption type.  The results showed that mud-wasp nest can be used as a low-cost adsorbent for the removal of Pb (II) ion from aqueous solutions.


2021 ◽  
Vol 7 (2) ◽  
pp. 55-65
Author(s):  
Nazanin Parsa ◽  
Hassan Rezai

Today, due to the industrialization of societies, the existence of heavy metals has created many problems for humans, other organisms, and the environment. Lead (Pb) is highly toxic and the second most commonly used metal. The aim of this study was to evaluate the efficiency of melamine-modified nanographene oxide in the removal of Pb from aqueous media. To increase the efficiency of graphene oxide, it was mechanically converted to nano graphene oxide and melamine (4, 2 and 6-triazine, 3, 1 and 5 triamine). Experiments were performed at pH value of 3-8, temperature of 15-50°C, Pb concentration of 5-200 mg/g, adsorbent dose of 0.01-0.06 g, and contact time of 15- 150 minutes. The mechanism of the adsorption process was investigated using two Langmuir and Freundlich isotherm models, pseudo-first order and pseudo-second order kinetic equations, and thermodynamic equations. The results showed that the adsorption rate corresponds to the Freundlich isotherm model and pseudo-second order kinetic equation. Thermodynamic studies also showed that the adsorption process is associated with increasing irregularities and it is endothermic. In constant conditions (pH of 6, contact time of 60 minutes, ambient temperature of 22°C, Pb concentration of 20 mg/L, and adsorbent dose of 0.01 g), the adsorption capacity was 191.65 mg/g. The highest adsorption occurs at the concentration of 5 mg/L and the highest adsorption capacity and removal percentage was observed at a concentration of 200 mg/L, which were 1896.3 mg/g and 98.8%, respectively. Due to the high adsorption capacity, the adsorbent was able to remove lead from the contaminated environment.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Tesfaye Akafu ◽  
Achalu Chimdi ◽  
Kefyalew Gomoro

Exposure to fluoride beyond the recommended level for longer duration causes both dental and skeletal fluorosis. Thus, the development of cost-effective, locally available, and environmentally benign adsorbents for fluoride removal from contaminated water sources is absolutely required. In the present study, diatomaceous earth (diatomite) locally available in Ethiopia, modified by treating it with an aluminum hydroxide solution, was used as an adsorbent for fluoride removal from aqueous solutions. Adsorption experiments were carried out by using batch contact method. The adsorbent was characterized using FT-IR spectroscopy. Effects of different parameters affecting efficiency of fluoride removal such as adsorbent dose, contact time, initial fluoride concentration, and pH were investigated and optimized. The optimum adsorbent dose, contact time, initial fluoride concentration, and pH values were 25 g/L, 180 min, 10 mg/L, and 6.7, respectively. The performance of the adsorbent was also tested under optimum conditions using groundwater samples taken from Hawassa and Ziway. Langmuir and Freundlich isotherm models were applied to describe the equilibrium data. Compared to Langmuir isotherm (R2 = 0.888), the Freundlich isotherm (R2 = 0.985) model was better fitted to describe the adsorption characteristics of fluoride on Al-diatomite. The Langmuir maximum adsorption capacity was 1.67 mg/g. The pseudosecond-order model was found to be more suitable than the pseudofirst-order to describe the adsorption kinetics. The low correlation coefficient value of R2 = 0.596 for the intraparticle diffusion model indicates that the intraparticle diffusion model does not apply to the present studied adsorption system. The maximum fluoride removal was observed to be 89.4% under the optimum conditions which indicated that aluminum hydroxide-modified diatomite can be used as efficient, cheap, and ecofriendly adsorbents for the removal of fluoride from contaminated water.


2015 ◽  
Vol 43 (3) ◽  
pp. 277-281 ◽  
Author(s):  
M Rahman ◽  
S Gul ◽  
M Ajmal ◽  
A Iqbal ◽  
Akk Achakzai

Removal of cadmium from aqueous solution was studied by using Quetta pine (Pinus halepensis Mill.) leaves. Batch adsorption experiments were performed as a function of appropriate equilibrium time, pH, concentration of adsorbate and amount of adsorbent. The optimum pH required for maximum adsorption was found to be 7.0 and the maximum contact time for the equilibrium was 30 minutes at adsorbent dose of 10 g. The maximum adsorption efficiency of cadmium removal was 98.50%. The results were better fitted by Langmuir than Freundlich isotherm. The separation factor of equilibrium 0.12 and 0.67 showed that Quetta pine leaves are good adsorbent of cadmium from aqueous solution DOI: http://dx.doi.org/10.3329/bjb.v43i3.21598 Bangladesh J. Bot. 43(3): 277-281, 2014 (December)


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
I. Osasona ◽  
O. O. Ajayi ◽  
A. O. Adebayo

The feasibility of using powdered cow hooves (CH) for removing Ni2+ from aqueous solution was investigated through batch studies. The study was conducted to determine the effect of pH, adsorbent dosage, contact time, adsorbent particle size, and temperature on the adsorption capacity of CH. Equilibrium studies were conducted using initial concentration of Ni2+ ranging from 15 to 100 mgL−1 at 208, 308, and 318 K, respectively. The results of our investigation at room temperature indicated that maximum adsorption of Ni2+ occurred at pH 7 and contact time of 20 minutes. The thermodynamics of the adsorption of Ni2+ onto CH showed that the process was spontaneous and endothermic. Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isotherm models were used to quantitatively analysed the equilibrium data. The equilibrium data were best fitted by Freundlich isotherm model, while the adsorption kinetics was well described by pseudo-second-order kinetic equation. The mean adsorption energy obtained from the D-R isotherm revealed that the adsorption process was dominated by physical adsorption. Powdered cow hooves could be utilized as a low-cost adsorbent at room temperature under the conditions of pH 7 and a contact time of 20 minutes for the removal of Ni(II) from aqueous solution.


2010 ◽  
Vol 5 (1) ◽  
Author(s):  
Rajeshkannan Rajan ◽  
Manivasagan Rajasimman ◽  
Rajamohan Natarajan

In this study, the use of wheat bran as a possible adsorbent has been successfully demonstrated in the removal of Acid blue9 (AB9) from aqueous solution. The effect of different parameters such as temperature, adsorbent dose, contact time, adsorbent size and agitation speed were investigated. The optimum conditions obtained from response surface methodology are: temperature-38.1°C, adsorbent dose (3.1g/L), contact time (206 min), adsorbent size 0.1mm (150mesh), and agitation speed (222rpm). The effect of pH and initial substrate concentration were studied. The pseudo-first order and pseudo-second order kinetics were tested. The sorption equilibrium, expressed by the Langmuir and Freundlich equations, indicated that the process was in compliance with Freundlich isotherm.


Author(s):  
Amarnath P.C & Shashikala K. J. Praveen Kumar D. G., Kalleshappa C.M.,

In the present study we explored the adsorptive characteristics of 4-nitroaniline from synthetic aqueous solution onto bagasse fly ash (BFA). Batch experiments were carried out to determine the influence of parameters like initial pH (pH0), adsorbent dose (m), contact time (t) and initial concentration (C0) on the removal of 4-nitroaniline. The maximum removal of 4-nitroaniline was determined to be 98% at lower concentrations (50 mg/L) and 41% at higher concentrations (300 mg/L), using a BFA dosage of 10 g/L at 303K. Kinetic study of 4-nitroaniline removal by BFA was well represented by pseudo second-order kinetic model. The 4-nitroaniline desorption from 4-nitroaniline loaded BFA shows that only 27% and 36% of 4-nitroaniline could be recovered using ethyl alcohol and acetone respectively.


2021 ◽  
Author(s):  
Samina Zaman ◽  
Md. Nayeem Mehrab ◽  
Md. Shahnul Islam ◽  
Gopal Chandra Ghosh ◽  
Tapos Kumar Chakraborty

Abstract This study investigates the potential applicability of hen feather (HF) to remove methyl red (MR) dye from aqueous solution with the variation of experimental conditions: contact time (1–180 min), pH (4–8), initial dye concentration (5–50 mg/L) and adsorbent dose (3–25 g/L). Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) evaluate the surface morphology and chemistry of HF, respectively. The maximum removal of MR by HF was 92% when the optimum conditions were initial MR dye concentration 05 mg/L, pH 4.0, adsorbent dose 07.0 g/L and 90.0 min equilibrium contact time. Langmuir isotherm (R2 = 0.98) was more suited than Freundlich isotherm (R2 = 0.96) for experimental data, and the highest monolayer adsorption capacity was 6.02 mg/g. The kinetics adsorption data fitted well to pseudo-second-order model (R2 = 0.999) and more than one process were involved during the adsorption mechanism but film diffusion was the potential rate-controlling step. The findings of the study show that HF is a very effective and low-cost adsorbent for removing MR dye from aqueous solutions.


Sign in / Sign up

Export Citation Format

Share Document