scholarly journals Predicting Unplanned Medical Visits Among Patients with Diabetes: Translation From Machine Learning to Clinical Implementation

2020 ◽  
Author(s):  
Arielle Selya ◽  
Drake Anshutz ◽  
Emily Griese ◽  
Tess L Weber ◽  
Benson Hsu ◽  
...  

Abstract Background: Diabetes is common and an economic burden in the United States. In this study, a machine learning predictive model was developed to predict unplanned medical visits among patients with diabetes. Methods: Data were drawn from electronic medical records (EMRs) from a large healthcare organization in the Northern Plans region of the US, from adult (≥18 years old) patients with type 1 or type 2 diabetes who received care at least once during the 3 year period. A variety of machine-learning classification models were run using standard EMR variables as predictors (age, body mass index (BMI), Systolic blood pressure (BP), Diastolic BP, low-density lipoprotein (LDL), high-density lipoprotein (HDL), glycohemoglobin (A1C), smoking status, number of diagnoses and number of prescriptions). The best-performing model after cross-validation testing was analyzed to identify strongest predictors.Results: The best-performing model was a radial-basis support vector machine, which achieved a prediction accuracy (average of sensitivity and specificity) of 66.2%. This outperformed a conventional logistic regression by 1.5 percentage points. High BP and low HDL were identified as the strongest predictors, such that eliminating these from the model decreased its overall prediction accuracy by 1.9 and 1.8 percentage points, respectively.Conclusion: Our machine-learning predictive model more accurately predicted unplanned medical visits among patients with diabetes, relative to conventional models. Post-hoc analysis of the model was used for hypothesis generation, namely that HDL and BP are the strongest contributors to unplanned medical visits among patients with diabetes. In this way, this predictive model can be used in moving from prediction to implementation and improved diabetes care management in clinical settings.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Arielle Selya ◽  
Drake Anshutz ◽  
Emily Griese ◽  
Tess L. Weber ◽  
Benson Hsu ◽  
...  

Abstract Background Diabetes is a medical and economic burden in the United States. In this study, a machine learning predictive model was developed to predict unplanned medical visits among patients with diabetes, and findings were used to design a clinical intervention in the sponsoring healthcare organization. This study presents a case study of how predictive analytics can inform clinical actions, and describes practical factors that must be incorporated in order to translate research into clinical practice. Methods Data were drawn from electronic medical records (EMRs) from a large healthcare organization in the Northern Plains region of the US, from adult (≥ 18 years old) patients with type 1 or type 2 diabetes who received care at least once during the 3-year period. A variety of machine-learning classification models were run using standard EMR variables as predictors (age, body mass index (BMI), systolic blood pressure (BP), diastolic BP, low-density lipoprotein, high-density lipoprotein (HDL), glycohemoglobin (A1C), smoking status, number of diagnoses and number of prescriptions). The best-performing model after cross-validation testing was analyzed to identify strongest predictors. Results The best-performing model was a linear-basis support vector machine, which achieved a balanced accuracy (average of sensitivity and specificity) of 65.7%. This model outperformed a conventional logistic regression by 0.4 percentage points. A sensitivity analysis identified BP and HDL as the strongest predictors, such that disrupting these variables with random noise decreased the model’s overall balanced accuracy by 1.3 and 1.4 percentage points, respectively. These recommendations, along with stakeholder engagement, behavioral economics strategies, and implementation science principles helped to inform the design of a clinical intervention targeting behavioral changes. Conclusion Our machine-learning predictive model more accurately predicted unplanned medical visits among patients with diabetes, relative to conventional models. Post-hoc analysis of the model was used for hypothesis generation, namely that HDL and BP are the strongest contributors to unplanned medical visits among patients with diabetes. These findings were translated into a clinical intervention now being piloted at the sponsoring healthcare organization. In this way, this predictive model can be used in moving from prediction to implementation and improved diabetes care management in clinical settings.


Author(s):  
Anik Das ◽  
Mohamed M. Ahmed

Accurate lane-change prediction information in real time is essential to safely operate Autonomous Vehicles (AVs) on the roadways, especially at the early stage of AVs deployment, where there will be an interaction between AVs and human-driven vehicles. This study proposed reliable lane-change prediction models considering features from vehicle kinematics, machine vision, driver, and roadway geometric characteristics using the trajectory-level SHRP2 Naturalistic Driving Study and Roadway Information Database. Several machine learning algorithms were trained, validated, tested, and comparatively analyzed including, Classification And Regression Trees (CART), Random Forest (RF), eXtreme Gradient Boosting (XGBoost), Adaptive Boosting (AdaBoost), Support Vector Machine (SVM), K Nearest Neighbor (KNN), and Naïve Bayes (NB) based on six different sets of features. In each feature set, relevant features were extracted through a wrapper-based algorithm named Boruta. The results showed that the XGBoost model outperformed all other models in relation to its highest overall prediction accuracy (97%) and F1-score (95.5%) considering all features. However, the highest overall prediction accuracy of 97.3% and F1-score of 95.9% were observed in the XGBoost model based on vehicle kinematics features. Moreover, it was found that XGBoost was the only model that achieved a reliable and balanced prediction performance across all six feature sets. Furthermore, a simplified XGBoost model was developed for each feature set considering the practical implementation of the model. The proposed prediction model could help in trajectory planning for AVs and could be used to develop more reliable advanced driver assistance systems (ADAS) in a cooperative connected and automated vehicle environment.


The increased usage of the Internet and social networks allowed and enabled people to express their views, which have generated an increasing attention lately. Sentiment Analysis (SA) techniques are used to determine the polarity of information, either positive or negative, toward a given topic, including opinions. In this research, we have introduced a machine learning approach based on Support Vector Machine (SVM), Naïve Bayes (NB) and Random Forest (RF) classifiers, to find and classify extreme opinions in Arabic reviews. To achieve this, a dataset of 1500 Arabic reviews was collected from Google Play Store. In addition, a two-stage Classification process was applied to classify the reviews. In the first stage, we built a binary classifier to sort out positive from negative reviews. In the second stage, however we applied a binary classification mechanism based on a set of proposed rules that distinguishes extreme positive from positive reviews, and extreme negative from negative reviews. Four major experiments were conducted with a total of 10 different sub experiments to fulfill the two-stage process using different X-validation schemas and Term Frequency-Inverse Document Frequency feature selection method. Obtained results have indicated that SVM was the best during the first stage classification with 30% testing data, and NB was the best with 20% testing data. The results of the second stage classification indicated that SVM has scored better results in identifying extreme positive reviews when dealing with the positive dataset with an overall accuracy of 68.7% and NB showed better accuracy results in identifying extreme negative reviews when dealing with the negative dataset, with an overall accuracy of 72.8%.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi139-vi139
Author(s):  
Jan Lost ◽  
Tej Verma ◽  
Niklas Tillmanns ◽  
W R Brim ◽  
Harry Subramanian ◽  
...  

Abstract PURPOSE Identifying molecular subtypes in gliomas has prognostic and therapeutic value, traditionally after invasive neurosurgical tumor resection or biopsy. Recent advances using artificial intelligence (AI) show promise in using pre-therapy imaging for predicting molecular subtype. We performed a systematic review of recent literature on AI methods used to predict molecular subtypes of gliomas. METHODS Literature review conforming to PRSIMA guidelines was performed for publications prior to February 2021 using 4 databases: Ovid Embase, Ovid MEDLINE, Cochrane trials (CENTRAL), and Web of Science core-collection. Keywords included: artificial intelligence, machine learning, deep learning, radiomics, magnetic resonance imaging, glioma, and glioblastoma. Non-machine learning and non-human studies were excluded. Screening was performed using Covidence software. Bias analysis was done using TRIPOD guidelines. RESULTS 11,727 abstracts were retrieved. After applying initial screening exclusion criteria, 1,135 full text reviews were performed, with 82 papers remaining for data extraction. 57% used retrospective single center hospital data, 31.6% used TCIA and BRATS, and 11.4% analyzed multicenter hospital data. An average of 146 patients (range 34-462 patients) were included. Algorithms predicting IDH status comprised 51.8% of studies, MGMT 18.1%, and 1p19q 6.0%. Machine learning methods were used in 71.4%, deep learning in 27.4%, and 1.2% directly compared both methods. The most common algorithm for machine learning were support vector machine (43.3%), and for deep learning convolutional neural network (68.4%). Mean prediction accuracy was 76.6%. CONCLUSION Machine learning is the predominant method for image-based prediction of glioma molecular subtypes. Major limitations include limited datasets (60.2% with under 150 patients) and thus limited generalizability of findings. We recommend using larger annotated datasets for AI network training and testing in order to create more robust AI algorithms, which will provide better prediction accuracy to real world clinical datasets and provide tools that can be translated to clinical practice.


Author(s):  
Ahmad Iwan Fadli ◽  
Selo Sulistyo ◽  
Sigit Wibowo

Traffic accident is a very difficult problem to handle on a large scale in a country. Indonesia is one of the most populated, developing countries that use vehicles for daily activities as its main transportation.  It is also the country with the largest number of car users in Southeast Asia, so driving safety needs to be considered. Using machine learning classification method to determine whether a driver is driving safely or not can help reduce the risk of driving accidents. We created a detection system to classify whether the driver is driving safely or unsafely using trip sensor data, which include Gyroscope, Acceleration, and GPS. The classification methods used in this study are Random Forest (RF) classification algorithm, Support Vector Machine (SVM), and Multilayer Perceptron (MLP) by improving data preprocessing using feature extraction and oversampling methods. This study shows that RF has the best performance with 98% accuracy, 98% precision, and 97% sensitivity using the proposed preprocessing stages compared to SVM or MLP.


2020 ◽  
Vol 14 ◽  

Breast Cancer (BC) is amongst the most common and leading causes of deaths in women throughout the world. Recently, classification and data analysis tools are being widely used in the medical field for diagnosis, prognosis and decision making to help lower down the risks of people dying or suffering from diseases. Advanced machine learning methods have proven to give hope for patients as this has helped the doctors in early detection of diseases like Breast Cancer that can be fatal, in support with providing accurate outcomes. However, the results highly depend on the techniques used for feature selection and classification which will produce a strong machine learning model. In this paper, a performance comparison is conducted using four classifiers which are Multilayer Perceptron (MLP), Support Vector Machine (SVM), K-Nearest Neighbors (KNN) and Random Forest on the Wisconsin Breast Cancer dataset to spot the most effective predictors. The main goal is to apply best machine learning classification methods to predict the Breast Cancer as benign or malignant using terms such as accuracy, f-measure, precision and recall. Experimental results show that Random forest is proven to achieve the highest accuracy of 99.26% on this dataset and features, while SVM and KNN show 97.78% and 97.04% accuracy respectively. MLP shows the least accuracy of 94.07%. All the experiments are conducted using RStudio as the data mining tool platform.


2017 ◽  
Author(s):  
Manato Akiyama ◽  
Kengo Sato ◽  
Yasubumi Sakakibara

AbstractMotivation: A popular approach for predicting RNA secondary structure is the thermodynamic nearest neighbor model that finds a thermodynamically most stable secondary structure with the minimum free energy (MFE). For further improvement, an alternative approach that is based on machine learning techniques has been developed. The machine learning based approach can employ a fine-grained model that includes much richer feature representations with the ability to fit the training data. Although a machine learning based fine-grained model achieved extremely high performance in prediction accuracy, a possibility of the risk of overfitting for such model has been reported.Results: In this paper, we propose a novel algorithm for RNA secondary structure prediction that integrates the thermodynamic approach and the machine learning based weighted approach. Ourfine-grained model combines the experimentally determined thermodynamic parameters with a large number of scoring parameters for detailed contexts of features that are trained by the structured support vector machine (SSVM) with the ℓ1 regularization to avoid overfitting. Our benchmark shows that our algorithm achieves the best prediction accuracy compared with existing methods, and heavy overfitting cannot be observed.Availability: The implementation of our algorithm is available at https://github.com/keio-bioinformatics/mxfold.Contact:[email protected]


Stroke ◽  
2020 ◽  
Vol 51 (Suppl_1) ◽  
Author(s):  
Paul Litvak ◽  
Jeevan Medikonda ◽  
Girish Menon ◽  
Pitchaiah Mandava

Background: Patients suffering from subarachnoid hemorrhage (SAH) have poor long-term outcomes. There are predictive models for ischemic and hemorrhagic stroke. However, there is paucity of models for SAH. Machine learning concepts were applied to build multi-stage Neural Networks (NN), Support Vector Machines (SVM) and Keras/Tensor Flow models to predict SAH outcomes. Methods: A database of ~800 aneurysmal SAH patients from Kasturba Medical College was utilized. Baseline variables of World Federation of Neurosurgeons 5-point scale (WFNS 1-5), age, gender, and presence/absence of hypertension and diabetes were considered in Stage 1. Stage 2 included all Stage 1 variables along with presence/absence of radiologic signs vasospasm and ischemia. Stage 3 includes earlier 2 stages and discharge Glasgow Outcome Scale (GOS 1-5). GOS at 3 months was predicted using 2-layer NN/SVM/Keras-TensorFlow models on the five point categorical scale as well as dichotomized to dead/alive and favorable (GOS 4-5) or unfavorable (GOS 1-3). Prediction accuracy of models was compared to the recorded GOS. Results: Prediction accuracy shown as percentages (See Table) for all three stages was similar for SVM, NN and Keras/TensorFlow models. Accuracy was remarkably higher with dichotomization compared to the complete five point GOS categorical scale. Conclusions: SVM, NN, and Keras-TensorFlow based machine learning models can be used to predict SAH outcomes to a high degree of accuracy. These powerful predictive models can be used to prognosticate and select patients into trials.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi143-vi144
Author(s):  
Omaditya Khanna ◽  
Anahita Fathi Kazerooni ◽  
Jose A Garcia ◽  
Chiharu Sako ◽  
Sherjeel Arif ◽  
...  

Abstract PURPOSE Although WHO grade I meningiomas are considered ‘benign’ tumors, an elevated Ki-67 is one crucial factor that has been shown to influence clinical outcomes. In this study, we use standard pre-operative MRI and develop a machine learning (ML) model to predict the Ki-67 in WHO grade I meningiomas. METHODS A retrospective analysis was performed of 306 patients that underwent surgical resection. The mean and median Ki-67 of tumor specimens were 4.84 ± 4.03% (range: 0.3–33.6) and 3.7% (Q1:2.3%, Q3:6%), respectively. Pre-operative MRI was used to perform radiomic feature extraction (N=2,520) followed by ML modeling using least absolute shrinkage and selection operator (LASSO) wrapped with support vector machine (SVM) through nested cross-validation on a discovery cohort (N=230), to stratify tumors based on Ki-67 < 5% and ≥ 5%. A replication cohort (N=76) was kept ‘unseen’ in order to provide insights regarding the generalizability of our predictive model. RESULTS A total of 60 radiomic features extracted from seven different MRI sequences were used in the final model. With this model, an AUC of 0.84 (95% CI: 0.78-0.90), with associated sensitivity and specificity of 84.1% and 73.3%, respectively, were achieved in the discovery cohort. The selected features in the trained predictive model were then applied to the subjects of the replication cohort and the model was applied independently in this cohort. An AUC of 0.83 (95% CI: 0.73-0.94), with a sensitivity of 82.6% and specificity of 85.5% was obtained for this independent testing. Furthermore, the model performed commendably when applied to all skull base and non-skull base tumors in our patient cohort, evidenced by comparable AUC values of 0.86 and 0.83, respectively. CONCLUSION The results of this study may provide enhanced diagnostics to the surgeon pre-operatively such that it can guide surgical strategy and individual patient treatment paradigms.


Sign in / Sign up

Export Citation Format

Share Document