scholarly journals Processing of Orange Peel Biomass waste of Juice Industries and Valorization to Smart Acoustic Material

Author(s):  
Ganeswar Nath ◽  
Priyanka P Singh

Abstract Non-destructive technique like ultrasonication has played crucial role in fabrication of effective graded acoustic material using carbon rich organic waste material. The peculiar structural configuration inside the fibrous material like orange peel have attract the researcher to create special interest in designing of some building acoustic material as well as many technological products. The noise reduction property of orange peel fibres of different particle size has been improved considerably after ultrasonically mercerization of NaOH.High penetrating and dispersive property of ultrasonic wave to assemble and regrouping among the fibrous material are quite remarkable for enhancing noise attenuation inside the composite. Scanning Electron Microscopy (SEM), Energy Dispersive Spectra(EDS), Fourier Transform Infra-Red(FTIR) and X-Ray Diffraction(XRD) analysis of both untreated and treated orange peel fibre of different particle size indicate the deformation in cellulose as well as anti cellulose with the aid of ultrasonicationpermits the composites to be a suitable acoustic material. The result confirm that ultrasonic treated composite has potential to absorb 88.6% of sound which makes it a class- B noiseabsorber with peripheral mechanism within the composite.

1988 ◽  
Vol 3 (3) ◽  
pp. 144-152 ◽  
Author(s):  
G. A. Raab

AbstractThe method described in this paper is a strict protocol for X-ray diffraction (XRD) analysis of mineral phases found in soils. Its application is not restricted to soils and is an attempt to standardize XRD sample preparation and analysis. The protocol requires the particle size of the < 2 mm - 0.002 mm fraction be reduced to 0.002 mm before analysis. In die qualitative section, the clay fraction ( < 0.002 mm particle size) is prepared as oriented slides. The suspended clay fraction is saturated with ethylene glycol, K +, and Mg+2; pipeted; air-dried; heat-treated at 110°C, 350°C, and 550°C; and X-rayed at each step in order to properly identify the clay minerals. In the quantitative section, the method employs a matrix-flushing agent, corundum (Al2O3). The corundum acts also as an internal standard, a calibration standard, and a reference standard. The suspended clay fraction is freeze-dried and corundum is added to each sample. Randomly oriented powder mounts are prepared from the < 2 mm - 0.002 mm fraction, and the < 0.002 mm fraction, and X-rayed. A series of reference standards are prepared based on the existing mineralogy, corundum is added, and each mixture is X-rayed. The software integrates the area under specific peaks (chosen for intensity and no overlap) in each sample, calculates the reference intensity ratios (RIRs) and calculates the percentage of each mineral based on the equation of Chung (1974). The attention to detail allows documentation and verification of the results yielding data of known quality.


2013 ◽  
Vol 834-836 ◽  
pp. 609-612 ◽  
Author(s):  
Ning Ma ◽  
Zhen Xiong Cheng ◽  
Huan Tao Wu ◽  
Fu Xing Ye

In order to examine the influences of tungsten carbide particle size on decarburization behavior and microstructure of HVOF sprayed WC-Co coating, four kinds of agglomerated WC-12wt.%Co powders were deposited on mild steel substrates by using a high velocity oxy-fuel (HVOF) spray system. The phase compositions and microstructure of the feedstock powders and sprayed coatings were investigated by X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM), respectively. The results showed that the decarburization became more serious with the decreasing of tungsten carbide particle size in the starting powder. W phase was detected in the as-sprayed nanocomposite WC-12wt.%Co coating. All the coatings showed very compact microstructure with the hard phases embedded in Co matrix. The microstructure of HVOF sprayed WC-12wt.%Co coatings depended on the feedstock powder structure. The shape of tungsten carbide particles was rounder and the volume fraction of carbide phase decreased in coatings as the tungsten carbide particle size decreased.


2015 ◽  
Vol 1115 ◽  
pp. 378-381 ◽  
Author(s):  
S. Anis Sofia ◽  
Noorasikin Samat ◽  
Meor Yusoff Meor Sulaiman

This paper compares the effect of dispersants which are Sodium Laureth Sulfate (SLS) and distilled water (DW) on the crystallization, particle size distribution and morphological behavior of nanoalpha Alumina (α-Al2O3) synthesized from Aluminium (Al) dross waste. The synthesizing of nanoα-Al2O3 via wet milling method was performed using a planetary mill for 4 hours at a speed of 550 rpm. The nanoα-Al2O3 powders with dispersants were characterized with x-ray diffraction (XRD), particle size analyzer (PSA) and transmission electron microscopy (TEM). XRD analysis shows the broadening and shifting of peaks after the sample was calcined at 1300 °C, indicating high crystallinity. The crystallite size of α-Al2O3 milled with SLS is also smaller than the α-Al2O3 milled with DW. These results are consistent with the PSA analysis in which the graphs displayed a symmetrical trend. Then, the PSA analysis is validated with TEM observation up to 100000x magnification, particularly for α-Al2O3 milled with SLS.


2012 ◽  
Vol 620 ◽  
pp. 257-262 ◽  
Author(s):  
Niraj Bala ◽  
Harpreet Singh ◽  
Satya Prakash

X-ray diffraction (XRD) is a versatile, non-destructive technique that reveals detailed information about the chemical composition and crystallographic structure of materials. In this work Ni-20Cr and Ni-50Cr coatings were deposited on two boiler steels namely T22 and SA 516 steel. The measurement of residual stresses of these cold sprayed coatings was done with the help of X-ray diffraction technique. This paper discussed the XRD study of the as-sprayed coatings. Further the XRD technique was used to study the uncoated and coated steels after cyclic exposure to air, molten salt [Na2SO4-60%V2O5], and actual boiler environments. The results obtained from the XRD analysis have been shown. The weight change results showed that the coated steels performed better than their uncoated counterparts which might be attributed to the formation of protective phases.


2010 ◽  
Vol 152-153 ◽  
pp. 1248-1252
Author(s):  
Qing Chang ◽  
Hong Qiang Ru ◽  
Liang Yu ◽  
Ji Guang Li

In this study, nano-hydroxyapatite (HA) powders were synthesized via a simple sol-gel method using Ca(NO3)2•4H2O and P2O5 as starting materials. Two different precursors, with and without citric acid (CA), were prepared. The transformation process of HA from precursors, purity and particle size of the obtained HA powders were evaluated. HA derived from the precursor with CA showed a different transformation process from that without CA. It was observed that the content of CaO as an unavoidable major impurity was reduced due to the addition of CA. In the calcined powders from the CA-free precursor, X-ray diffraction (XRD) patterns revealed an intense CaO peak. For the calcined powders from the CA-addition precursor, XRD analysis showed a very weak CaO peak. It was also found that the synthesized HA powders from precursor with CA were finer than those without CA. The mechanism of the influence of CA on the formation, purity and particle size distribution of HA powders was discussed.


2014 ◽  
Vol 29 (3) ◽  
pp. 307-310
Author(s):  
Timothy Greening

Diketopyrrolopyrrole (DPP) is a pigment widely used in modern paints for industrial and artistic applications. Identification of this pigment in paint for art authentication and forensics has previously been accomplished with gas chromatography/mass spectrometry or Laser Raman. Three commercial artist's paints containing DPP were analyzed by x-ray diffraction (XRD). Alpha phase DPP was identified in two of the samples, barite extender the only crystalline component identified in the other sample. In conclusion, XRD analysis of paint samples can identify DPP, as can other organic analyses, but has the advantage of being non-destructive and also identifying the crystal structure. However, the fact that in one sample only extender could be identified does impose some limitations on the analysis of paints.


2021 ◽  
Vol 1028 ◽  
pp. 359-364
Author(s):  
Nendar Herdianto ◽  
Dwi Gustiono ◽  
Riesma Tasomara ◽  
Adita Wardani Rahmania ◽  
Ika Maria Ulfa ◽  
...  

Reconstruction of bone defect due to a disease or a trauma can use autograft, allograft, xenograft or synthetic bonegraft as the bone substitute material. However, in particular cases, it is required a material that has a specific resorption characteristic, beside owning excellent bioactive properties, such as β-tricalcium phosphate (β-TCP). In this study, we report the synthesis of β-TCP particles with mesopores structure by using chitosan and aloe vera as templates. A solution of (NH4)2HPO4 was added dropwise into solution of Ca(NO3)2·4H2O and the template at 85°C for 2 hours, and subsequently aged for 3 hours. Then, the formed precipitate was washed and centrifuged repeatedly prior to drying at 80°C for 24 hours. Finally, the dried precipitate was calcined at 900°C for 1 hour to obtain β-TCP powder. Phase identification and mesopores structure were analyzed using X-ray diffraction (XRD), while the existence of functional groups was identified by Fourier-transform infrared (FTIR) spectroscopy. Microstructure and particle size distribution were characterized by scanning electron microscopy (SEM) and particle size analyzer (PSA), respectively. XRD analysis shows that β-TCP is dominant with the presence of small amount of impurities. Furthermore, low angle peak in XRD analysis indicates the formation of mesopores structure. From the SEM and PSA analysis, the morphology of both TCP-K and TCP-KA particles showed more large agglomerates and more heterogeneous particle size distribution due to the addition of the biopolymers in the synthesis of β-TCP.


2020 ◽  
Vol 10 (3) ◽  
pp. 5675-5678

Nanocellulose (NC) was extracted from sugarcane bagasse (SCB) by acid hydrolysis. Alkalization and bleaching were used to treat SCB before the acid hydrolysis. The hydrolysis was carried out at 45 and 60℃ for 90 and 180 min. Chemical structure, crystallinity and thermal stability of the materials were studied using Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) analysis and thermogravimetric analysis (TGA), respectively. Morphology and particle size of nanocellulose were also studied using field emission scanning electron microscope (FE-SEM). FTIR results confirmed that lignin and hemicellulose were eliminated after alkali and bleaching treatments. These chemical treatments resulted in an improvement in the crystallinity and thermal stability of SCB. Sphere shape nanocellulose particles were observed by FE-SEM. With increasing hydrolysis time and temperature, the crystallinity of nanocellulose was increased but particle size and thermal stability were decreased.


2020 ◽  
Vol 11 (1) ◽  
pp. 123-131
Author(s):  
Nushrat Naushin ◽  
Sadi Md Shahriar ◽  
Oishy Roy ◽  
Ahmed Sharif

The structural, morphological, magnetic and ferroelectric properties of calcium (Ca) doped bismuth ferrite (BFO) synthesized using a sol-gel method were studied. X-ray diffraction (XRD) analysis followed by Rietveld refinement revealed the lattice distortion of BFO after doping with 6% and 8% Ca. This also led to the reduction in particle size by creating oxygen vacancies, which was observed from the surface morphology using Field Emission Scanning Electron Microscopy (FESEM). The Magnetic properties exhibited some enhancements in saturation magnetization when the particle size was near a limiting value. The reduction in the coercive magnetic field with the increase in dopant concentration was also evident from the M-H hysteresis loop measured by Vibrating Sample Magnetometer (VSM). The Ferroelectric P-E hysteresis loop exhibited an increased symmetry in the hysteresis loop and increase in the polarization with the increase in %Ca. The 8% Ca doped BFO exhibited an incomplete saturation in the hysteresis loop and was evident to exhibit leakage current characteristics. Journal of Engineering Science 11(1), 2020, 123-131


2021 ◽  
Vol 33 (3) ◽  
pp. 583-590
Author(s):  
V.T. Geetha ◽  
S. Induja

Nanocrystalline powder of neodymium substituted iron oxides samples were synthesized through the microwave approach. The synthesized pristine Fe3O4 and Nd-doped Fe3O4 structural properties were analyzed by the X-ray diffraction technique. The microstructural details, morphology and elemental composition were assessed by transmission and scanning electron microscopy attached with EDX. The Fe3O4 nanostructures possess spherical morphology as well as consistent particle size distribution, which is confirmed by HR-SEM. The formation of Fe3O4 with high purity was confirmed by EDX and XRD analysis. The particle size calculated by HR-TEM images and crystallite size through the XRD study showed that the value obtained by both the methods is nearly the same. The catalytic properties of Fe3O4 nanoparticles are examined in the selective oxidation of styrene.


Sign in / Sign up

Export Citation Format

Share Document