scholarly journals HN1 Promotes Proliferation, Metastasis and Attenuates the Chemosensitivity of HCC Cells to Oxaliplatin by Inhibiting Degradation of HMGB1 Through Interacting With TRIM28

Author(s):  
Ruhua Wang ◽  
Yunong Fu ◽  
Menglin Yao ◽  
Xiaomeng Cui ◽  
Yan Zhao ◽  
...  

Abstract Background: The oxaliplatin-based chemotherapy has revealed an encouraging therapeutic efficacy for advanced hepatocellular carcinoma patients. However, the development of resistance limits its clinical utilization. In addition, the chemotherapy resistance in HCC is usually accompanied with other malignant phenotypes, such as cell proliferation and metastasis, which together result in poor prognosis of HCC patients. Therefore, efforts should be made to explore potential regulators which fuel multiple events of HCC progression.Methods: The qRT-PCR, western blot, immunohistochemistry and immunofluorescence were performed to measure mRNA and protein expression. MTT assay, colony formation and Transwell assay were performed to evaluate cell proliferation and metastasis. Flow cytometry was performed to test cell apoptosis. Alkaline Comet assay was performed to measure DNA lesions. Transmission electron microscope analysis provided potent testimony of autophagy. The role of HN1 on the malignant phenotypes of hepatoma carcinoma was demonstrated in vitro and in vivo.Results: The immunohistochemistry analysis of HCC patient tissues revealed that the expression of HN1 was higher in HCC tissues compared to adjacent tissues and was associated with worse prognosis. In vitro, HN1 knockdown inhibited proliferation and metastasis of HCC cells, whereas HN1 overexpression promoted their proliferation and metastasis. In addition, we found that HN1 knockdown sensitized HCC cells to oxaliplatin, which is companied with deteriorated DNA damage and increased cell apoptosis in oxaliplatin-treated HCC cells. In vivo, HN1 knockdown inhibited the tumor growth and metastasis, and promoted the anti-cancer efficiency of oxaliplatin. Mechanically, HN1 prevented HMGB1 from ubiquitination and degradation via autophagy-lysosome pathway, which is related to its interaction with TRIM28, and overexpression of HMGB1 can restore the malignant phenotypes of HN1 knockdown in HCC cells. Furthermore, we found that HN1 can regulate cellular autophagy via HMGB1, which is important to tumor-promoting effect of HN1.Conclusions: In conclusion, we systemically revealed the multiple functions of HN1 in HCC progression and the underlying molecular mechanism, which indicated that HN1 could be a promising therapeutic target for HCC treatment.

Author(s):  
Zhao-Ming Xiao ◽  
Dao-Jun Lv ◽  
Yu-zhong Yu ◽  
Chong Wang ◽  
Tao Xie ◽  
...  

BackgroundSWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin subfamily C member 1 (SMARCC1) protein is a potential tumor suppressor in various cancers. However, its role in prostate cancer (PCa) remains controversial. The aim of this study was to determine the biological function of SMARCC1 in PCa and explore the underlying regulatory mechanisms.MethodsThe expression of SMARCC1 was validated in PCa tissues by immunohistochemistry. Meanwhile, function experiments were used to evaluate the regulatory role on cell proliferation and metastasis in PCa cells with SMARCC1 depletion both in vitro and in vivo. The expression levels of relevant proteins were detected by Western blotting.ResultsOur finding showed that SMARCC1 was significantly downregulated in prostate adenocarcinoma, with a higher Gleason score (GS) than that in low GS. The decreased expression of SMARCC1 was significantly correlated with a higher GS and poor prognosis. Additionally, we found that silencing of SMARCC1 dramatically accelerated cell proliferation by promoting cell cycle progression and enhancing cell migration by inducing epithelial mesenchymal transition (EMT). Furthermore, depletion of SMARCC1 facilitated PCa xenograft growth and lung metastasis in murine models. Mechanistically, the loss of SMARCC1 activated the PI3K/AKT pathway in PCa cells.ConclusionSMARCC1 suppresses PCa cell proliferation and metastasis via the PI3K/AKT signaling pathway and is a novel therapeutic target.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Lin Tan ◽  
Weiming Qu ◽  
Dajun Wu ◽  
Minji Liu ◽  
Qian Wang ◽  
...  

GRHL3 is a factor associated with a tumor, of which the molecular mechanism remains a further investigation. We explored the underlying mechanism of tumor-promoting effect of GRHL3 in colorectal cancer (CRC), which is involved in the MEK1/2 pathway. The expression of GRHL3 was measured in CRC and adjacent normal tissue using qPCR and immunohistochemical staining. Lentivirus-mediated knockdown expression of GRHL3 was performed in the CRC cell line HT29. Cell proliferation and metastasis were assayed in vitro, and tumorigenicity was investigated in vivo. We found higher GRHL3 expression in colorectal cancer, which was negatively correlated with patients’ prognosis. Results from studies in vitro and in vivo indicated that downregulation of GRHL3 expression inhibited tumor growth and metastasis and inhibited the activation of the MEK1/2 pathway. The effect of GRHL3 downexpression was the same as that of MEK1/2 antagonists on suppression of tumor growth and metastasis. Our results suggested that GRHL3 may act as an oncogene to promote tumor growth and metastasis via the MEK pathway in colorectal cancer.


2015 ◽  
Vol 35 (4) ◽  
Author(s):  
Qinying Liu ◽  
Yangmei Xu ◽  
Shenghong Wei ◽  
Wei Gao ◽  
Li Chen ◽  
...  

Our study revealed that miR-148b was specifically down-regulated in hepatic cancer stem cells (HCSCs) and affected cell proliferation and metastasis in vitro and tumorigenicity in vivo by directly targeting to Neuropilin-1(NRP-1), a transmembrane co-receptor involved in metastasis, suggesting that enforced miR-148b expression might be an efficient therapeutic strategy to eradicate HCSCs and reduce metastasis.


2019 ◽  
Vol 105 (3) ◽  
pp. 231-242 ◽  
Author(s):  
Jian-jun Lu ◽  
Yao-wu Su ◽  
Chao-jun Wang ◽  
Di-feng Li ◽  
Liang Zhou

The present study aimed to investigate the role of semaphorin 4D (Sema4D) in bladder cancer cell proliferation and metastasis in vivo and in vitro. Effects of Sema4D modulation on cancer cell viability and clonogenic abilities were assessed by MTT assay and colony formation assay. Cell apoptosis, cell cycle analysis, transwell assays, and wound-healing assays were also assayed. A mouse model of bladder cancer was established to observe the tumorigenesis in vivo. Our data showed that Sema4D was 4-fold upregulated in clinical bladder cancer tissues relative to noncancerous ones and differentially expressed in bladder cancer cell lines. Knockdown of Sema4D in bladder cancer T24 and 5637 cells significantly decreased cell proliferation, clonogenic potential, and motility. On the contrary, overexpression of Sema4D in bladder cancer SV-HUC-1 cells significantly increased cell viability and motility. Concordantly, knockdown of Sema4D impaired while overexpression of Sema4D promoted bladder cancer cell growth rates in xenotransplanted mice. Cell cycle was arrested by modulation of Sema4D. Cell apoptotic rates and the mitochondrial membrane potentials were consistently increased upon knockdown of Sema4D in T24 cells and 5637 cells. Western blotting revealed that epithelial–mesenchymal transition was promoted by Sema4D. The PI3K/AKT pathway was activated upon Sema4D overexpression in SV-HUC-1 cells, while it was inactivated by knockdown of Sema4D in T24 cells. All these data suggest that Sema4D promotes cell proliferation and metastasis in bladder cancer in vivo and in vitro. The oncogenic behavior of Sema4D is achieved by activating the PI3K/AKT pathway.


2019 ◽  
Author(s):  
Yang Yang ◽  
Qi Mei

Abstract Background:Argonaute 2 (AGO2), a typical member of the Ago gene family, plays a pivotal role in hepatocellular carcinoma (HCC) tumorgenesis through regulating the short interfering RNA-mediated gene silencing. However, the underlined mechanism needs clarified. Herein, we found that AGO2 was frequently upregulated in human HCC cancerous tissues compared with non-cancerous tissues. Methods: Clinical analyses were performed to determine the relation between the expression level of AGO2 and prognosis in HCC patients. By using CRISPR/Cas9 approach in SMMC-7721 cells and establishing xenograft model in nude mice, we further identified the role of AGO2 in HCC. Gene expression microarray analysis was used to reveal the changes of gene expression profile mediated by AGO2 depletion in SMMC-7721 cells. Results: We observed that the overexpression of AGO2 was associated with poor prognosis in HCC patients. The knockout of AGO2 inhibited tumor cell proliferation and metastasis in vivo and in vitro. We also identified that AGO2 facilitates HCC tumorigenesis through modulating Survivin, Vimentin and Snail expression. Conclusions: Therefore, this study not only demonstrates that accumulation of AGO2 promotes cell proliferation and metastasis in HCC, but also provides a novel molecular mechanism in HCC progression.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
An Yang ◽  
Xin Liu ◽  
Ping Liu ◽  
Yunzhang Feng ◽  
Hongbo Liu ◽  
...  

Abstract Background Long noncoding RNA (lncRNA), urothelial carcinoma-associated 1 (UCA1) is aberrantly expressed in multiple cancers and has been verified as an oncogene. However, the underlying mechanism of UCA1 in the development of gastric cancer is not fully understood. In the present study, we aimed to identify how UCA1 promotes gastric cancer development. Methods The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) data were used to analyze UCA1 and myosin VI (MYO6) expression in gastric cancer. Western blot and quantitative real-time PCR (QPCR) were performed to test the expression level of the UCA1/miR-145/MYO6 axis in gastric cancer cell lines and tissues. The roles of the UCA1/miR-145/MYO6 axis in gastric cancer in vitro and in vivo were investigated by CCK-8 assay, flow cytometry, siRNAs, immunohistochemistry, and a mouse xenograft model. The targeted relationship among UCA1, miR-145, and MYO6 was predicted using LncBase Predicted v.2 and TargetScan online software, and then verified by luciferase activity assay and RNA immunoprecipitation. Results UCA1 expression was higher but miR-145 expression was lower in gastric cancer cell lines or tissues, compared to the adjacent normal cell line or normal tissues. Function analysis verified that UCA1 promoted cell proliferation and inhibited cell apoptosis in the gastric cancer cells in vitro and in vivo. Mechanistically, UCA1 could bind directly to miR-145, and MYO6 was found to be a downstream target gene of miR-145. miR-145 mimics or MYO6 siRNAs could partly reverse the effect of UCA1 on gastric cancer cells. Conclusions UCA1 accelerated cell proliferation and inhibited cell apoptosis through sponging miR-145 to upregulate MYO6 expression in gastric cancer, indicating that the UCA1/miR-145/MYO6 axis may serve as a potential therapeutic target for gastric cancer.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zehua Zhang ◽  
Fei Dai ◽  
Fei Luo ◽  
Wenjie Wu ◽  
Shuai Zhang ◽  
...  

AbstractOsteosarcoma is a malignant osteoblastic tumor that can gravely endanger the lives and health of children and adolescents. Therefore, there is an urgent need to explore new biomarkers for osteosarcoma and determine new targeted therapies to improve the efficacy of osteosarcoma treatment. Diaphanous related formin 3 (DIAPH3) promotes tumorigenesis in hepatocellular carcinoma and lung adenocarcinoma, suggesting that DIAPH3 may be a target for tumor therapy. To date, there have been no reports on the function of DIAPH3 in osteosarcoma. DIAPH3 protein expression in osteosarcoma tissues and healthy bone tissues adjacent to cancer cells was examined by immunohistochemical staining. DIAPH3 mRNA expression correlates with overall survival and reduced disease-free survival. DIAPH3 protein is upregulated in osteosarcoma tissues, and its expression is significantly associated with tumor size, tumor stage, node metastasis, and distant metastasis. Functional in vitro experiments revealed that DIAPH3 knockdown suppressed cell proliferation and suppressed cell migration and invasion of osteosarcoma cell lines MG-63 and HOS. Functional experiments demonstrated that DIAPH3 knockdown inhibited subcutaneous tumor growth and lung metastasis in vivo. In conclusion, DIAPH3 expression can predict the clinical outcome of osteosarcoma. In addition, DIAPH3 is involved in the proliferation and metastasis of osteosarcoma, and as such, DIAPH3 may be a potential therapeutic target for osteosarcoma.


Sign in / Sign up

Export Citation Format

Share Document