scholarly journals miRNA-148b suppresses hepatic cancer stem cell by targeting neuropilin-1

2015 ◽  
Vol 35 (4) ◽  
Author(s):  
Qinying Liu ◽  
Yangmei Xu ◽  
Shenghong Wei ◽  
Wei Gao ◽  
Li Chen ◽  
...  

Our study revealed that miR-148b was specifically down-regulated in hepatic cancer stem cells (HCSCs) and affected cell proliferation and metastasis in vitro and tumorigenicity in vivo by directly targeting to Neuropilin-1(NRP-1), a transmembrane co-receptor involved in metastasis, suggesting that enforced miR-148b expression might be an efficient therapeutic strategy to eradicate HCSCs and reduce metastasis.

Author(s):  
Zhao-Ming Xiao ◽  
Dao-Jun Lv ◽  
Yu-zhong Yu ◽  
Chong Wang ◽  
Tao Xie ◽  
...  

BackgroundSWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin subfamily C member 1 (SMARCC1) protein is a potential tumor suppressor in various cancers. However, its role in prostate cancer (PCa) remains controversial. The aim of this study was to determine the biological function of SMARCC1 in PCa and explore the underlying regulatory mechanisms.MethodsThe expression of SMARCC1 was validated in PCa tissues by immunohistochemistry. Meanwhile, function experiments were used to evaluate the regulatory role on cell proliferation and metastasis in PCa cells with SMARCC1 depletion both in vitro and in vivo. The expression levels of relevant proteins were detected by Western blotting.ResultsOur finding showed that SMARCC1 was significantly downregulated in prostate adenocarcinoma, with a higher Gleason score (GS) than that in low GS. The decreased expression of SMARCC1 was significantly correlated with a higher GS and poor prognosis. Additionally, we found that silencing of SMARCC1 dramatically accelerated cell proliferation by promoting cell cycle progression and enhancing cell migration by inducing epithelial mesenchymal transition (EMT). Furthermore, depletion of SMARCC1 facilitated PCa xenograft growth and lung metastasis in murine models. Mechanistically, the loss of SMARCC1 activated the PI3K/AKT pathway in PCa cells.ConclusionSMARCC1 suppresses PCa cell proliferation and metastasis via the PI3K/AKT signaling pathway and is a novel therapeutic target.


2021 ◽  
Author(s):  
Ruhua Wang ◽  
Yunong Fu ◽  
Menglin Yao ◽  
Xiaomeng Cui ◽  
Yan Zhao ◽  
...  

Abstract Background: The oxaliplatin-based chemotherapy has revealed an encouraging therapeutic efficacy for advanced hepatocellular carcinoma patients. However, the development of resistance limits its clinical utilization. In addition, the chemotherapy resistance in HCC is usually accompanied with other malignant phenotypes, such as cell proliferation and metastasis, which together result in poor prognosis of HCC patients. Therefore, efforts should be made to explore potential regulators which fuel multiple events of HCC progression.Methods: The qRT-PCR, western blot, immunohistochemistry and immunofluorescence were performed to measure mRNA and protein expression. MTT assay, colony formation and Transwell assay were performed to evaluate cell proliferation and metastasis. Flow cytometry was performed to test cell apoptosis. Alkaline Comet assay was performed to measure DNA lesions. Transmission electron microscope analysis provided potent testimony of autophagy. The role of HN1 on the malignant phenotypes of hepatoma carcinoma was demonstrated in vitro and in vivo.Results: The immunohistochemistry analysis of HCC patient tissues revealed that the expression of HN1 was higher in HCC tissues compared to adjacent tissues and was associated with worse prognosis. In vitro, HN1 knockdown inhibited proliferation and metastasis of HCC cells, whereas HN1 overexpression promoted their proliferation and metastasis. In addition, we found that HN1 knockdown sensitized HCC cells to oxaliplatin, which is companied with deteriorated DNA damage and increased cell apoptosis in oxaliplatin-treated HCC cells. In vivo, HN1 knockdown inhibited the tumor growth and metastasis, and promoted the anti-cancer efficiency of oxaliplatin. Mechanically, HN1 prevented HMGB1 from ubiquitination and degradation via autophagy-lysosome pathway, which is related to its interaction with TRIM28, and overexpression of HMGB1 can restore the malignant phenotypes of HN1 knockdown in HCC cells. Furthermore, we found that HN1 can regulate cellular autophagy via HMGB1, which is important to tumor-promoting effect of HN1.Conclusions: In conclusion, we systemically revealed the multiple functions of HN1 in HCC progression and the underlying molecular mechanism, which indicated that HN1 could be a promising therapeutic target for HCC treatment.


2022 ◽  
Vol 119 (2) ◽  
pp. e2116865118
Author(s):  
Shiv Shah ◽  
Caldon Jayson Esdaille ◽  
Maumita Bhattacharjee ◽  
Ho-Man Kan ◽  
Cato T. Laurencin

Stem cells are of great interest in tissue regeneration due to their ability to modulate the local microenvironment by secreting bioactive factors (collectively, secretome). However, secretome delivery through conditioned media still requires time-consuming cell isolation and maintenance and also may contain factors antagonistic to targeted tissue regeneration. We have therefore engineered a synthetic artificial stem cell (SASC) system which mimics the paracrine effect of the stem cell secretome and provides tailorability of the composition for targeted tissue regeneration. We report the first of many applications of the SASC system we have formulated to treat osteoarthritis (OA). Choosing growth factors important to chondrogenesis and encapsulating respective recombinant proteins in poly (lactic-coglycolic acid) 85:15 (PLGA) we fabricated the SASC system. We compared the antiinflammatory and chondroprotective effects of SASC to that of adipose-derived stem cells (ADSCs) using in vitro interleukin 1B-induced and in vivo collagenase-induced osteoarthritis rodent models. We have designed SASC as an injectable therapy with controlled release of the formulated secretome. In vitro, SASC showed significant antiinflammatory and chondroprotective effects as seen by the up-regulation of SOX9 and reduction of nitric oxide, ADAMTS5, and PRG4 genes compared to ADSCs. In vivo, treatment with SASC and ADSCs significantly attenuated cartilage degeneration and improved the biomechanical properties of the articular cartilage in comparison to OA control. This SASC system demonstrates the feasibility of developing a completely synthetic, tailorable stem cell secretome which reinforces the possibility of developing a new therapeutic strategy that provides better control over targeted tissue engineering applications.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Kshitiz Raj Shrestha ◽  
So Young Yoo

Self-renewal and differentiation of stem cells can be the best option for treating intractable diseases in regenerative medicine, and they occur when these cells reside in a special microenvironment, called the “stem cell niche.” Thus, the niche is crucial for the effective performance of the stem cells in bothin vivoandin vitrosince the niche provides its functional cues by interacting with stem cells chemically, physically, or topologically. This review provides a perspective on the different types of artificial niches including engineered phage and how they could be used to recapitulate or manipulate stem cell niches. Phage-based artificial niche engineering as a promising therapeutic strategy for repair and regeneration of tissues is also discussed.


2019 ◽  
Vol 105 (3) ◽  
pp. 231-242 ◽  
Author(s):  
Jian-jun Lu ◽  
Yao-wu Su ◽  
Chao-jun Wang ◽  
Di-feng Li ◽  
Liang Zhou

The present study aimed to investigate the role of semaphorin 4D (Sema4D) in bladder cancer cell proliferation and metastasis in vivo and in vitro. Effects of Sema4D modulation on cancer cell viability and clonogenic abilities were assessed by MTT assay and colony formation assay. Cell apoptosis, cell cycle analysis, transwell assays, and wound-healing assays were also assayed. A mouse model of bladder cancer was established to observe the tumorigenesis in vivo. Our data showed that Sema4D was 4-fold upregulated in clinical bladder cancer tissues relative to noncancerous ones and differentially expressed in bladder cancer cell lines. Knockdown of Sema4D in bladder cancer T24 and 5637 cells significantly decreased cell proliferation, clonogenic potential, and motility. On the contrary, overexpression of Sema4D in bladder cancer SV-HUC-1 cells significantly increased cell viability and motility. Concordantly, knockdown of Sema4D impaired while overexpression of Sema4D promoted bladder cancer cell growth rates in xenotransplanted mice. Cell cycle was arrested by modulation of Sema4D. Cell apoptotic rates and the mitochondrial membrane potentials were consistently increased upon knockdown of Sema4D in T24 cells and 5637 cells. Western blotting revealed that epithelial–mesenchymal transition was promoted by Sema4D. The PI3K/AKT pathway was activated upon Sema4D overexpression in SV-HUC-1 cells, while it was inactivated by knockdown of Sema4D in T24 cells. All these data suggest that Sema4D promotes cell proliferation and metastasis in bladder cancer in vivo and in vitro. The oncogenic behavior of Sema4D is achieved by activating the PI3K/AKT pathway.


2019 ◽  
Author(s):  
Yang Yang ◽  
Qi Mei

Abstract Background:Argonaute 2 (AGO2), a typical member of the Ago gene family, plays a pivotal role in hepatocellular carcinoma (HCC) tumorgenesis through regulating the short interfering RNA-mediated gene silencing. However, the underlined mechanism needs clarified. Herein, we found that AGO2 was frequently upregulated in human HCC cancerous tissues compared with non-cancerous tissues. Methods: Clinical analyses were performed to determine the relation between the expression level of AGO2 and prognosis in HCC patients. By using CRISPR/Cas9 approach in SMMC-7721 cells and establishing xenograft model in nude mice, we further identified the role of AGO2 in HCC. Gene expression microarray analysis was used to reveal the changes of gene expression profile mediated by AGO2 depletion in SMMC-7721 cells. Results: We observed that the overexpression of AGO2 was associated with poor prognosis in HCC patients. The knockout of AGO2 inhibited tumor cell proliferation and metastasis in vivo and in vitro. We also identified that AGO2 facilitates HCC tumorigenesis through modulating Survivin, Vimentin and Snail expression. Conclusions: Therefore, this study not only demonstrates that accumulation of AGO2 promotes cell proliferation and metastasis in HCC, but also provides a novel molecular mechanism in HCC progression.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zehua Zhang ◽  
Fei Dai ◽  
Fei Luo ◽  
Wenjie Wu ◽  
Shuai Zhang ◽  
...  

AbstractOsteosarcoma is a malignant osteoblastic tumor that can gravely endanger the lives and health of children and adolescents. Therefore, there is an urgent need to explore new biomarkers for osteosarcoma and determine new targeted therapies to improve the efficacy of osteosarcoma treatment. Diaphanous related formin 3 (DIAPH3) promotes tumorigenesis in hepatocellular carcinoma and lung adenocarcinoma, suggesting that DIAPH3 may be a target for tumor therapy. To date, there have been no reports on the function of DIAPH3 in osteosarcoma. DIAPH3 protein expression in osteosarcoma tissues and healthy bone tissues adjacent to cancer cells was examined by immunohistochemical staining. DIAPH3 mRNA expression correlates with overall survival and reduced disease-free survival. DIAPH3 protein is upregulated in osteosarcoma tissues, and its expression is significantly associated with tumor size, tumor stage, node metastasis, and distant metastasis. Functional in vitro experiments revealed that DIAPH3 knockdown suppressed cell proliferation and suppressed cell migration and invasion of osteosarcoma cell lines MG-63 and HOS. Functional experiments demonstrated that DIAPH3 knockdown inhibited subcutaneous tumor growth and lung metastasis in vivo. In conclusion, DIAPH3 expression can predict the clinical outcome of osteosarcoma. In addition, DIAPH3 is involved in the proliferation and metastasis of osteosarcoma, and as such, DIAPH3 may be a potential therapeutic target for osteosarcoma.


Sign in / Sign up

Export Citation Format

Share Document