scholarly journals MiR-24-3p Attenuates IL-1β-Induced Chondrocyte Injury Associated With Osteoarthritis by Targeting BCL2L12

2020 ◽  
Author(s):  
Jin Xu ◽  
Xiaozhong Qian ◽  
Ren Ding

Abstract Background: Osteoarthritis (OA) is a chronic and degenerative joint disease prevalent in the elderly. MiR-24-3p has been reported to be involved in an OA-resembling environment. However, the functional role and underlying mechanism of miR-24-3p in chondrocyte injury associated with OA remains unknown. Methods: The expression of miR-24-3p was determined in OA cases and control patients, as well as IL-1β-stimulated chondrocyte cell line CHON-001 using reverse transcription quantitative PCR analysis. Cell viability was analyzed by CCK-8 assay. Apoptosis status was assessed by caspase-3 activity detection. The pro-inflammatory cytokines (TNF-α and IL-18) were determined using ELISA assay. The association between miR-24-3p and BCL2L12 was confirmed by luciferase reporter assay.Results: We first observed that miR-24-3p expression level was lower in the OA cases than in the control patients and IL-1β decreased the expression of miR-24-3p in the chondrocyte CHON-001. Functionally, overexpression of miR-24-3p significantly attenuated IL-1β-induced chondrocyte injury, as reflected by increased cell viability, decreased caspase-3 activity, pro-inflammatory cytokines (TNF-α and IL-18). Western blot analysis showed that overexpression of miR-24-3p weakened IL-1β-induced cartilage degradation, as reflected by reduction of MMP13 (Matrix Metalloproteinase-13) and ADAMTS5 (A Disintegrin And Metalloproteinase with Thrombospondin Motifs-5) protein expression, as well as markedly elevation of COL2A1 (collagen type II). Importantly, BCL2L12 was demonstrated to be a target of miR-24-3p. BCL2L12 knockdown imitated, while overexpression significantly abrogated the protective effects of miR-24-3p against IL-1β-induced chondrocyte injury.Conclusions: In conclusion, our work provides important insight into targeting miR-24-3p/BCL2L12 axis in OA therapy.

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Jin Xu ◽  
Xiaozhong Qian ◽  
Ren Ding

Abstract Background MiR-24-3p has been reported to be involved in an osteoarthritis (OA)-resembling environment. However, the functional role and underlying mechanism of miR-24-3p in chondrocyte injury associated with OA remains unknown. Methods The expression of miR-24-3p was determined using reverse transcription quantitative PCR analysis in OA cases and control patients, as well as IL-1β-stimulated chondrocyte cell line CHON-001. The cell viability was analyzed by CCK-8 assay. Apoptosis status was assessed by caspase-3 activity detection. The pro-inflammatory cytokines (TNF-α and IL-18) were determined using ELISA assay. The association between miR-24-3p and B cell leukemia 2-like 12 (BCL2L12) was confirmed by luciferase reporter assay. Results We first observed that miR-24-3p expression level was lower in the OA cases than in the control patients and IL-1β decreased the expression of miR-24-3p in the chondrocyte CHON-001. Functionally, overexpression of miR-24-3p significantly attenuated IL-1β-induced chondrocyte injury, as reflected by increased cell viability, decreased caspase-3 activity, and pro-inflammatory cytokines (TNF-α and IL-18). Western blot analysis showed that overexpression of miR-24-3p weakened IL-1β-induced cartilage degradation, as reflected by reduction of MMP13 (Matrix Metalloproteinase-13) and ADAMTS5 (a disintegrin and metalloproteinase with thrombospondin motifs-5) protein expression, as well as markedly elevation of COL2A1 (collagen type II). Importantly, BCL2L12 was demonstrated to be a target of miR-24-3p. BCL2L12 knockdown imitated, while overexpression significantly abrogated the protective effects of miR-24-3p against IL-1β-induced chondrocyte injury. Conclusions In conclusion, our work provides important insight into targeting miR-24-3p/BCL2L12 axis in OA therapy.


2021 ◽  
Vol 21 (02) ◽  
Author(s):  
Yaolei Ge

ABSTRACT The present study examined functions of miR-200a-3p accelerated progressions of HCM cells via IGF2R and Wnt/β-catenin signalling pathway after hypoxia/reoxygenation treatment in vitro. CCK-8 showed that cell viability of HCM was inhibited while apoptosis rates detected by flow cytometry were promoted in a time dependent manner after H/R (12 hours and 24 hours). Beyond that, Bcl-2 and c-IAP1 were decreased but Bax and caspase-3 were upregulated by H/R treatment. IL-1β, IL-6, TNF-α and NLRP3 were also increased after treatment. RT-qPCR showed increased expressions of miR-200a-3p by H/R treatment while its inhibitor elevated cell viability but depressed apoptosis rate and pro-inflammatory cytokines’ expressions. IGF2R was upregulated after H/R treatment and its downregulation magnified effects of suppressed miR-200a-3p. HIF-1α/Wnt/β -catenin signalling pathway was activated by miR-200a-3p and IGF2R while IWP-2 treatment abolished the activation of Wnt3a andβ -catenin, causing decreased apoptosis and pro-inflammatory cytokines’ expressions but accelerated the cell viability.


2017 ◽  
Vol 43 (5) ◽  
pp. 2010-2021 ◽  
Author(s):  
Da-Peng Wu ◽  
Jun-Lei Zhang ◽  
Jing-Yu Wang ◽  
Ming-Xing Cui ◽  
Jin-Ling Jia ◽  
...  

Background/Aims: Osteoarthritis (OA) is a common inflammatory joint disease. miRNAs are associated with OA and functionally implicated in the pathogenesis of the disease. In the present study, we investigated the role of miR-1246 in the lipopolysaccharide (LPS)-induced inflammatory injury of ATDC5 cells. Methods: ATDC5 cells were cultured and treated with LPS in a series of concentration (0, 1, 5, and 10 µg/ml) for 5 h. The cells were transfected with miR-1246-mimic, inhibitor, si-HNF4γ or negative control, then were assessed for cell viability using CCK8 assay, apoptosis by flow-cytometry and expressions of miR-1246 and pro-inflammatory cytokines by qRT-PCR and western blot analysis. Results: Cell viability was significantly reduced and cell apoptosis was added in ATDC5 cells injured with LPS at the dosage of 5 and 10 µg/ml. Relative mRNA expressions of pro-inflammatory cytokines (IL-1β, IL-6, IL-8 and TNF-α) were significantly increased. miR-1246 was up-regulated in ATDC5 cells treated with LPS. Moreover, miR-1246 overexpression aggravated LPS-induced decrease in cell viability, increase in apoptosis and overproduction of pro-inflammatory factors. mRNA and protein expressions of HNF4γ were significantly suppressed in cells transfected with miR-124-mimic. Further, miR-1246 knockdown alleviated LPS-induced inflammatory injury by up-regulating the expression of HNF4γ and activation of PI3K/AKT and JAK/STAT pathways. Conclusions: Suppression of miR-1246 alleviated LPS-induced inflammatory injury in chondrogenic ADTC5 cells by up-regulation of HNF4γ and activation of PI3K/AKT and JAK/STAT pathways. The findings of this study will provide a novel viewpoint regarding miR-1246 target for clinical.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Chang Zhou ◽  
Tianda He ◽  
Liji Chen

Abstract Background Osteoarthritis (OA) is one kind of degenerative joint disease that happens in articular cartilage and other joint tissues. Long non-coding RNAs (lncRNAs) have been reported to serve as pivotal regulators in many diseases, including OA. However, the role and relevant regulatory mechanisms of CASC19 in OA remain unknown. Methods The expression levels of CASC19, miR-152-3p, and DDX6 were identified by reverse-transcription polymerase chain reaction (RT-qPCR). Cell viability and apoptosis were determined by Cell Counting Kit-8 (CCK-8) and flow cytometry assays, respectively. The relationship between miR-152-3p and CASC19 or DDX6 was predicted by bioinformatics tools and verified by the dual-luciferase reporter assay. Results CASC19 was verified to exhibit higher expression in OA tissues and cells. Moreover, inhibition of CASC19 weakened proinflammatory cytokine (IL-6, IL-8, and TNF-α) production and cell apoptosis but facilitated cell viability. Experiments of the ceRNA mechanism elucidated that miR-152-3p was a sponge for CASC19, and miR-152-3p targeted DDX6, suggesting that CASC19 sponged miR-152-3p to release DDX6. Finally, results from rescue assays proved that the impacts of CASC19 silencing on chondrocytes apoptosis and proinflammatory cytokine production could be reversed by DDX6 overexpression. Conclusions It was concluded that lncRNA CASC19 accelerated chondrocytes apoptosis and proinflammatory cytokine production to exacerbate osteoarthritis development through regulating the miR-152-3p/DDX6 axis. These findings may offer an effective biological target for OA treatment.


2021 ◽  
Vol 40 (12_suppl) ◽  
pp. S397-S405
Author(s):  
Pankaj Tripathi ◽  
Saeed Alshahrani

Background: Ursolic acid (UA) is a natural pentacyclic triterpenoid that is known for its benefits under several pathological conditions. Cisplatin (CP) is among the most preferred chemotherapeutic agents; however, its nephrotoxicity limits its clinical utility. Purpose: This study was aimed to determine the role of UA in the reduction of CP-induced nephrotoxicity and mitigation of pro-inflammatory cytokines and apoptosis in a rat model. Methodology: Male Wistar rats were randomized into vehicle control, CP (7.5 mg/kg), UA 10 mg/kg, and CP with UA 5 and 10 mg/kg groups. Kidney and blood samples were collected for assessment of renal function, measurement of pro-inflammatory cytokines, apoptosis markers, antioxidant activity, and tissue histology. Results: CP significantly increased the levels of serum Cr, BUN, and uric acid; it also induced histological damage reflecting the pathophysiology observed during nephrotoxicity. CP has also shown its pro-oxidant activity in kidney tissue because CP decreased the levels of GSH, SOD, and CAT; it increased the lipid peroxidation as measured by MDA content. In addition, CP significantly upregulated the activity of pro-inflammatory cytokines and expression of apoptotic markers, that is, there were increased levels of IL-1β, IL-6, TNF-α, caspase-3, and caspase-9. Two weeks of continuous treatment of UA showed significant recovery against CP-induced nephrotoxicity; UA decreased the levels of Cr, BUN, and uric acid and ameliorated histological damage. UA also downregulated the activities of IL-1β, IL-6, and TNF-α as well as expression of caspase-3 and caspase-9. Furthermore, CP-induced oxidative stress that was antagonized by UA—the levels of GSH, SOD, and CAT were significantly increased while MDA content was decreased. Conclusions: UA has a protective effect against CP-induced nephrotoxicity, which may be due to its antioxidant activity and mitigation of ILβ-1, ILβ-6, TNF-α, and markers of apoptosis.


2020 ◽  
Vol 10 (24) ◽  
pp. 9009
Author(s):  
Chiara Borrelli ◽  
Conor T. Buckley

The intervertebral disc (IVD) relies mainly on diffusion through the cartilaginous endplates (CEP) to regulate the nutrient and metabolites exchange, thus creating a challenging microenvironment. Degeneration of the IVD is associated with intradiscal acidification and elevated levels of pro-inflammatory cytokines. However, the synergistic impact of these microenvironmental factors for cell-based therapies remains to be elucidated. The aim of this study was to investigate the effects of low pH and physiological levels of interleukin-1ß (IL-1β) and tumour necrosis factor-α (TNF-α) on nasal chondrocytes (NCs) and subsequently compare their matrix forming capacity to nucleus pulposus (NP) cells in acidic and inflamed culture conditions. NCs and NP cells were cultured in low glucose and low oxygen at different pH conditions (pH 7.1, 6.8 and 6.5) and supplemented with physiological levels of IL-1β and TNF-α. Results showed that acidosis played a pivotal role in influencing cell viability and matrix accumulation, while inflammatory cytokine supplementation had a minor impact. This study demonstrates that intradiscal pH is a dominant factor in determining cell viability and subsequent cell function when compared to physiologically relevant inflammatory conditions. Moreover, we found that NCs allowed for improved cell viability and more effective NP-like matrix synthesis compared to NP cells, and therefore may represent an alternative and appropriate cell choice for disc regeneration.


2018 ◽  
Vol 45 (2) ◽  
pp. 832-843 ◽  
Author(s):  
Taitao Sun ◽  
Jian Yu ◽  
Liang Han ◽  
Shuo Tian ◽  
Bin Xu ◽  
...  

Background/Aims: Several long non-coding RNAs (lncRNAs) play vital roles in osteoarthritis (OA), whereas the role of lncRNA RP11-445H22.4 in OA remains unclear. The study aimed to investigate the effect of lncRNA RP11-445H22.4 on lipopolysaccharide (LPS)-induced cell viability, apoptosis and inflammatory injury of OA. Methods: The expression of RP11-445H22.4, miR-301a and CXCR4 in human cartilage ATDC5 cells were altered by transfection, and then cells were exposed to 5 µg/ml LPS for 12 h. Then cell viability, apoptosis, apoptosis-related factors and inflammatory cytokines were analyzed by CCK-8, flow cytometry, western blot, RT-qPCR and ELISA, respectively. Dual-luciferase reporter assay was performed to assess the binging sites of RP11-445H22.4 and miR-301a. The signal pathways of NF-κB and MAPK/ ERK were determined by western blot. Results: LPS reduced cell viability, increased apoptosis and stimulated release of IL-1β, IL-6, IL-8 and TNF-α. However, RP11-445H22.4 inhibition significantly rescued LPS-induced injuries by promoting cell viability, suppressing apoptosis and inflammatory cytokines secretions in ATDC5 cells. In addition, miR-301a directly bound to RP11-445H22.4, and suppression of miR-301a inversed the effects of RP11-445H22.4 inhibition. Furthermore, CXCR4 was a direct target of miR-301a, and CXCR4 silencing increased cell viability, decreased apoptosis and inflammatory cytokines secretions in LPS-treated ATDC5 cells. Besides, we found that CXCR4 silencing blocked LPS-activated NF-κB and MAPK/ERK pathways. Conclusions: The study indicated that lncRNA RP11-445H22.4-miR-301a-CXCR4 axis played an important role in cartilage ATDC5 cells and provided a theoretical basis of lncRNA RP11-445H22.4 in OA.


Biomolecules ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 185 ◽  
Author(s):  
Acharya Balkrishna ◽  
Pradeep Nain ◽  
Anshul Chauhan ◽  
Niti Sharma ◽  
Abhishek Gupta ◽  
...  

(1) Background: Withania somnifera Dunal (Ashwagandha) is a widely used medicinal herb in traditional medicinal systems with extensive research on various plant parts. Surprisingly, seeds of W. somnifera have never been investigated for their therapeutic potential. (2) Methods: W. somnifera seeds were extracted for fatty acids (WSSO) using super critical fluid extraction, and was analyzed by gas chromatography. Its therapeutic potential in psoriasis-like skin etiologies was investigated using a 12-O tetradecanoyl phorbol 13-acetate (TPA)-induced psoriatic mouse model. Psoriatic inflammation along with psoriatic lesions and histopathological scores were recorded. WSSO was also tested on murine macrophage (RAW264.7), human epidermoid (A431), and monocytic (THP-1) cells, stimulated with TPA or lipo poly-saccharide (LPS) to induce pro-inflammatory cytokine (IL-6 and TNF-α) release. NFκB promoter activity was also measured by luciferase reporter assay. (3) Results: Topical application of WSSO with concurrent oral doses significantly reduced inflammation-induced edema, and repaired psoriatic lesions and associated histopathological scores. Inhibition of pro-inflammatory cytokines release was observed in WSSO-treated A431 and THP-1 cells, along with reduced NFκB expression. WSSO also inhibited reactive nitrogen species (RNS) in LPS-stimulated RAW264.7 cells. (4) Conclusion: Here we show that the fatty acids from W. somnifera seeds have strong anti-inflammatory properties, along with remarkable therapeutic potential on psoriasis-like skin etiologies.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Jeonghyeon Moon ◽  
Seon-yeong Lee ◽  
Jeong Won Choi ◽  
A Ram Lee ◽  
Jin Hee Yoo ◽  
...  

AbstractScleroderma is an autoimmune disease that causes dermal fibrosis. It occurs when collagen accumulates in tissue as a result of persistent inflammation. Th17 cells and pro-inflammatory cytokines such as IL-1β, IL-6, IL-17, and TNF-α play important roles in the pathogenesis of scleroderma. Because metformin, a medication used to treat diabetes, has effective immunoregulatory functions, we investigated its therapeutic function in scleroderma. Mice in a model of bleomycin-induced scleroderma were treated with metformin for 2 weeks. Histological assessment demonstrated protective effects of metformin against scleroderma. Metformin decreased the expression of pro-inflammatory factors in dermal tissue and lymphocytes. It also decreased mRNA expression of pro-inflammatory cytokines (IL-1β, IL-6, IL-17, and TNF-α) and fibrosis-inducing molecules both in vivo and in vitro. These results suggest that metformin treatment has anti-inflammatory effects on lymphocytes via the inhibition of IL-17 and cytokines related to Th17 differentiation, such as IL-1β, IL-6, and TNF-α. To investigate how metformin modulates the inflammatory process in skin fibroblasts, we measured mTOR-STAT3 signaling in skin fibroblasts and found that phosphorylated mTOR and phosphorylated STAT3 protein expression were decreased by metformin treatment. These results suggest that metformin has potential to treat scleroderma by inhibiting pro-inflammatory cytokines and anti-inflammatory activity mediated by mTOR-STAT3 signaling.


2020 ◽  
Author(s):  
Saúl Pérez-Castrillo ◽  
María Luisa González-Fernández ◽  
Jessica Álvarez-Suárez ◽  
Jaime Sánchez-Lázaro ◽  
Marta Esteban-Blanco ◽  
...  

Abstract Introduction: Osteoarthritis (OA) is a degenerative joint disease affecting the whole joint structure. Many authors have focused on the factors responsible for the development of inflammatory processes involved in OA. Adipose tissue-derived mesenchymal stem cells (ASCs) represent a promising alternative of cell-based therapy strategy in the treatment of OA which could be combined with any drugs. Chondroitin sulfate plays a protective role in the joint based on the decrease of pro-inflammatory cytokines, thus having an important role in the activation and inhibition of metabolic pathways in chondrocytes.Aims: In this study, the effectiveness of chondroitin sulfate and ASCs in the treatment of knee OA have also been evaluated.Materials: Cytokines and factors which are involved in OA as well as specific cartilage gene expression after adding ASCs and chondroitin sulfate have been discussed in detail.Results: Our results show a decrease in the expression of all genes related to the pro-inflammatory cytokines analysed. Although there was no increase in the expression of the specific genes of the cartilage matrix, such as collagen type II and aggrecan.Conclusions: This study show the effectiveness of association of ASCs and chondroitin sulfate for the treatment of OA.


Sign in / Sign up

Export Citation Format

Share Document