scholarly journals In VitroAntimicrobial Resistance of Urinary Escherichia coli Isolates among U.S. Outpatients from 2000 to 2010

2012 ◽  
Vol 56 (4) ◽  
pp. 2181-2183 ◽  
Author(s):  
Guillermo V. Sanchez ◽  
Ronald N. Master ◽  
James A. Karlowsky ◽  
Jose M. Bordon

ABSTRACTThis study examinesin vitroantimicrobial resistance data fromEscherichia coliisolates obtained from urine samples of U.S. outpatients between 2000 and 2010 using The Surveillance Network (TSN). Antimicrobial susceptibility results (n= 12,253,679) showed the greatest increases inE. coliresistance from 2000 to 2010 for ciprofloxacin (3% to 17.1%) and trimethoprim-sulfamethoxazole (TMP-SMX) (17.9% to 24.2%), whereas nitrofurantoin (0.8% to 1.6%) and ceftriaxone (0.2% to 2.3%) showed minimal change. From 2000 to 2010, the antimicrobial resistance of urinaryE. coliisolates to ciprofloxacin and TMP-SMX among outpatients increased substantially.

2020 ◽  
Vol 64 (4) ◽  
Author(s):  
Sun Hee Moon ◽  
Yihong Kaufmann ◽  
En Huang

ABSTRACT Polymyxin resistance mediated by the mcr-1 gene threatens the last-resort antibiotics. Linear lipopeptide paenipeptin analogues 1 and 15 disrupted the outer membrane of Gram-negative pathogens and potentiated clarithromycin and rifampin against mcr-1-positive Escherichia coli from the FDA-CDC Antimicrobial Resistance Isolate Bank. In the presence of paenipeptin, clarithromycin and rifampin resulted in over 3-log reduction of E. coli in vitro. Moreover, paenipeptin-antibiotic combinations significantly reduced E. coli in a murine thigh infection model.


2021 ◽  
Vol 9 (2) ◽  
pp. 326
Author(s):  
Frederick Adzitey ◽  
Nurul Huda ◽  
Amir Husni Mohd Shariff

Meat is an important food source that can provide a significant amount of protein for human development. The occurrence of bacteria that are resistant to antimicrobials in meat poses a public health risk. This study evaluated the occurrence and antimicrobial resistance of E. coli (Escherichia coli) isolated from raw meats, ready-to-eat (RTE) meats and their related samples in Ghana. E. coli was isolated using the USA-FDA Bacteriological Analytical Manual and phenotypic antimicrobial susceptibility test was performed by the disk diffusion method. Of the 200 examined meats and their related samples, 38% were positive for E. coli. Notably, E. coli was highest in raw beef (80%) and lowest in RTE pork (0%). The 45 E. coli isolates were resistant ≥ 50% to amoxicillin, trimethoprim and tetracycline. They were susceptible to azithromycin (87.1%), chloramphenicol (81.3%), imipenem (74.8%), gentamicin (72.0%) and ciprofloxacin (69.5%). A relatively high intermediate resistance of 33.0% was observed for ceftriaxone. E. coli from raw meats, RTE meats, hands of meat sellers and working tools showed some differences and similarities in their phenotypic antimicrobial resistance patterns. Half (51.1%) of the E. coli isolates exhibited multidrug resistance. The E. coli isolates showed twenty-two different resistant patterns, with a multiple antibiotic resistance index of 0.0 to 0.7. The resistant pattern amoxicillin (A, n = 6 isolates) and amoxicillin-trimethoprim (A-TM, n = 6 isolates) were the most common. This study documents that raw meats, RTE meats and their related samples in Ghana are potential sources of antimicrobial-resistant E. coli and pose a risk for the transfer of resistant bacteria to the food chain, environment and humans.


2018 ◽  
Vol 38 (11) ◽  
pp. 2150-2154 ◽  
Author(s):  
Ruben V. Horn ◽  
Windleyanne G.A. Bezerra ◽  
Elisângela S. Lopes ◽  
Régis S.C. Teixeira ◽  
Isaac N.G. Silva ◽  
...  

ABSTRACT: This study aimed to isolate Escherichia coli and Salmonella enterica from captured feral pigeons in Fortaleza, Brazil, and, in addition to evaluate the antimicrobial susceptibility profiles and diagnose diarrheagenic E. coli strains. Pigeons were captured in four public locations in Fortaleza with three techniques. Individual cloacal swab samples were collected and submitted to bacterial isolation, biochemical identification and antimicrobial susceptibility test. Disk diffusion technique was used with twelve antibiotics. E. coli strains were submitted to DNA extraction followed by PCR to diagnose five diarrheagenic pathotypes. A total of 124 birds were captured. One bird was positive for Salmonella enterica (0.81%) and 121 (97.58%) were positive for E. coli. Among these, 110 isolates were submitted to antimicrobial susceptibility test and 28.18% (31/110) presented resistance to at least one antibiotic. Resistance to azithromycin was the most frequent (21.82%), followed by tetracycline (10.91%) and sulfamethoxazole with trimethoprim (8.9%). Multidrug resistance, calculated as a resistance to at least 3 antimicrobial classes, was identified in 3.64% (4/110) of strains. The maximum number of antimicrobial classes to which one strain was resistant was seven. Results demonstrated nine different resistance profiles and the most frequent was tetracycline and sulfamethoxazole with trimethoprim (4 strains), followed by chloramphenicol, azithromycin, tetracycline and sulfamethoxazole with trimethoprim (3 strains). Amoxicillin with clavulanic acid and tobramycin presented lowest levels of antimicrobial resistance, to which none of the tested strains were resistant. A single strain was positive for the eltB gene, which is a diagnostic tool to identify the Enterotoxigenic E. coli (ETEC) pathotype. None of the other investigated genes (stx1, stx2, estA, eaeA, ipaH, aatA and aaiC) were identified. The single isolate of S. enterica was a rough strain of Salmonella enterica subsp. enterica, but serotype identification was not possible. However, this isolate presented resistance to amoxicillin, amoxicillin with clavulanic acid, tetracycline and sulfamethoxazole with trimethoprim. Therefore, captured feral pigeons of Fortaleza presented a low prevalence of S. enterica and diarrheagenic E. coli. Considering the investigated pathogens, our results suggest a good health status and a low public health risk. However, important antimicrobial resistance profiles were identified.


mBio ◽  
2014 ◽  
Vol 5 (3) ◽  
Author(s):  
Christopher W. Lennon ◽  
Kimberly C. Lemmer ◽  
Jessica L. Irons ◽  
Max I. Sellman ◽  
Timothy J. Donohue ◽  
...  

ABSTRACTDksA is a global regulatory protein that, together with the alarmone ppGpp, is required for the “stringent response” to nutrient starvation in the gammaproteobacteriumEscherichia coliand for more moderate shifts between growth conditions. DksA modulates the expression of hundreds of genes, directly or indirectly. Mutants lacking a DksA homolog exhibit pleiotropic phenotypes in other gammaproteobacteria as well. Here we analyzed the DksA homolog RSP2654 in the more distantly relatedRhodobacter sphaeroides, an alphaproteobacterium. RSP2654 is 42% identical and similar in length toE. coliDksA but lacks the Zn finger motif of theE. coliDksA globular domain. Deletion of the RSP2654 gene results in defects in photosynthetic growth, impaired utilization of amino acids, and an increase in fatty acid content. RSP2654 complements the growth and regulatory defects of anE. colistrain lacking thedksAgene and modulates transcriptionin vitrowithE. coliRNA polymerase (RNAP) similarly toE. coliDksA. RSP2654 reduces RNAP-promoter complex stabilityin vitrowith RNAPs fromE. coliorR. sphaeroides, alone and synergistically with ppGpp, suggesting that even though it has limited sequence identity toE. coliDksA (DksAEc), it functions in a mechanistically similar manner. We therefore designate the RSP2654 protein DksARsp. Our work suggests that DksARsphas distinct and important physiological roles in alphaproteobacteria and will be useful for understanding structure-function relationships in DksA and the mechanism of synergy between DksA and ppGpp.IMPORTANCEThe role of DksA has been analyzed primarily in the gammaproteobacteria, in which it is best understood for its role in control of the synthesis of the translation apparatus and amino acid biosynthesis. Our work suggests that DksA plays distinct and important physiological roles in alphaproteobacteria, including the control of photosynthesis inRhodobacter sphaeroides. The study of DksARsp, should be useful for understanding structure-function relationships in the protein, including those that play a role in the little-understood synergy between DksA and ppGpp.


2010 ◽  
Vol 54 (7) ◽  
pp. 3043-3046 ◽  
Author(s):  
Stephen P. Hawser ◽  
Samuel K. Bouchillon ◽  
Daryl J. Hoban ◽  
Robert E. Badal ◽  
Rafael Cantón ◽  
...  

ABSTRACT From 2002 to 2008, there was a significant increase in extended-spectrum beta-lactamase (ESBL)-positive Escherichia coli isolates in European intra-abdominal infections, from 4.3% in 2002 to 11.8% in 2008 (P < 0.001), but not for ESBL-positive Klebsiella pneumoniae isolates (16.4% to 17.9% [P > 0.05]). Hospital-associated isolates were more common than community-associated isolates, at 14.0% versus 6.5%, respectively, for E. coli (P < 0.001) and 20.9% versus 5.3%, respectively, for K. pneumoniae (P < 0.01). Carbapenems were consistently the most active drugs tested.


2021 ◽  
Vol 11 (3) ◽  
pp. 650-658
Author(s):  
Mohammed Yahia Alasmary

Background: To explore the prevalence of urinary tract infections (UTIs) among female patients in the Najran region of Saudi Arabia and determine their antimicrobial resistance pattern. Methods: This study was conducted on 136 urine samples collected from outpatient departments (OPDs) of the different government hospitals in the Najran region of Saudi Arabia. Over one year, the results of susceptibility testing reports of outpatient midstream urine samples from three government hospitals were prospectively evaluated. Results: Of 136 urine samples, only 123 (90.45%) were found to show significant growth for UTIs, from which 23 different uropathogens were identified. Escherichia coli (58.5%) was the most commonly isolated organism, followed by Klebsiella pneumoniae (8.1%). The isolated microorganism showed increased resistance patterns from 3.3% to 62.6%, with an overall resistance of 27.19%. Meropenem was the most effective antimicrobial, followed by amikacin and ertapenem (0.47%, 0.91%, and 1.5% resistance, respectively). At the same time, ampicillin and cephazolin were the least (62.6% and 59.5% resistance, respectively) effective. Overall, eleven (8.94%) uropathogens isolates were ESBLs, among which there were eight (6.5%) Escherichia coli, one (0.81%) Klebsiella pneumoniae, one (0.81%) Klebsiella oxytoca, and one (0.81%) Citrobacter amalonaticus. Conclusions: E. coli remains the most commonly isolated causative uropathogens, followed by Klebsiella species. The prevalence of pathogenic E. coli and Klebsiella species underscores the importance of developing cost-effective, precise, and rapid identification systems to minimize public exposure to uropathogens. Antibiotic susceptibility data revealed that most of the isolates were resistant to the majority of the antibiotics. The patients with UTIs in the Najran region of Saudi Arabia are at a high risk of antibiotic resistance, leading to significant problems in outpatient department (OPD) treatment outcomes and raising the alarm for the physician to change their empiric treatment.


2019 ◽  
Vol 49 ◽  
Author(s):  
Ivana Jukić ◽  
Danijel Topić ◽  
El-Jesah Đulić ◽  
Amela Dedeić- Ljubović

Objectives/Aim: Urinary tract infections (UTI) are a serious public health problem and caused by many pathogens, most often by Escherichia coli and Klebsiella pneumoniae.Aim of this study was to show the frequency and antimicrobial susceptibility pattern of E. coli and K. pneumoniae in hospital isolates, following the GLASS methodology.Methods: This is a retrospective study that was conducted in the Laboratory for Urinary Infections OU Clinical Microbiology CCUS in the period from January till December 2018.A total of 13760 urine samples were processed, using standard laboratory methods, in which significant bacteriuria was detected in 3218 (23.4%) of specimens.Results: Out of the total number of positive samples, E. coli was isolated in 1166 (36.2%) and K. pneumoniae at 341 (10.6%) patients. The presence of E. coli and K. pneumoniae isolates is dominant in females (1103/73.2%) and age group 60 and older (812/54.7%). Out of the total E. coli isolates, the ESBL strain was presented with 79 (6.8%) and K. pneumoniae with 145 (42.5%). The proportion of carbapenemase (CPE) produced by K. pneumoniae isolates was 8 (2.4%). The ESBL strain distribution analysis on clinics showed the highest prevalence of both isolates at the Clinic for Nephrology: K. pneumoniae 26/17,9%; E. coli: 12/15.4%. Isolated E. coli showed the highest resistance to ampicillin 673/1166 (57,7%), trimethoprim-sulfamethoxazole 454/1166 (38.9%) and ciprofloxacin 253/970 (26.1%), while K. pneumoniae to ciprofloxacin and trimethoprim-sulfamethoxazole with 151/285 (53.0%) and 164/341 (48.1%), respectively.Conclusions: Our study has shown that the most common cause of urinary infections in hospital settings are E. coli and K. pneumoniae. Data analysis showed that the presence of ESBL isolates was significantly higher in K. pneumoniae than E. coli. CPE isolates of K. pneumoniae were also detected.


Author(s):  
Rachana Kanaujia ◽  
Amit Kumar ◽  
Malay Bajpai

Background: Urinary tract infections (UTIs) are one of the most common infections. For treatment of UTIs, there are limited antibiotics due to increased resistance among uropathogens. Two older antibiotics; Nitrofurantoin and Fosfomycin have become novel oral therapeutic options against uropathogens. Aim of the study was to identify UTI causing micro-organisms and evaluate in-vitro activity of nitrofurantoin and fosfomycin against most common isolated organism (E. coli).Methods: Results of urine samples culture and susceptibility testing over a period of 1 year were analysed and included in this study.Results: Micro-organisms were isolated from 568 urine samples. Most commonly isolated organism was Escherichia coli (40.50%), followed by Klebsiella spp. (20.07%) and Staphylococcus spp. (17.07%). Susceptibility of E. coli to nitrofurantoin and fosfomycin was 91.74% and 65.65% respectively. Conclusion: Good activity of nitrofurantoin and fosfomycin against E. coli indicates that these two drugs are potential therapeutic alternatives for urinary tract infections.


mBio ◽  
2011 ◽  
Vol 2 (3) ◽  
Author(s):  
Olaya Rendueles ◽  
Laetitia Travier ◽  
Patricia Latour-Lambert ◽  
Thierry Fontaine ◽  
Julie Magnus ◽  
...  

ABSTRACTBacterial biofilms often form multispecies communities in which complex but ill-understood competition and cooperation interactions occur. In light of the profound physiological modifications associated with this lifestyle, we hypothesized that the biofilm environment might represent an untapped source of natural bioactive molecules interfering with bacterial adhesion or biofilm formation. We produced cell-free solutions extracted fromin vitromature biofilms formed by 122 naturalEscherichia coliisolates, and we screened these biofilm extracts for antiadhesion molecules active on a panel of Gram-positive and Gram-negative bacteria. Using this approach, we showed that 20% of the tested biofilm extracts contained molecules that antagonize bacterial growth or adhesion. We characterized a compound, produced by a commensal animalE. colistrain, for which activity is detected only in biofilm extract. Biochemical and genetic analyses showed that this compound corresponds to a new type of released high-molecular-weight polysaccharide whose biofilm-associated production is regulated by the RfaH protein. We demonstrated that the antiadhesion activity of this polysaccharide was restricted to Gram-positive bacteria and that its production reduced susceptibility to invasion and provided rapid exclusion ofStaphylococcus aureusfrom mixedE. coliandS. aureusbiofilms. Our results therefore demonstrate that biofilms contain molecules that contribute to the dynamics of mixed bacterial communities and that are not or only poorly detected in unconcentrated planktonic supernatants. Systematic identification of these compounds could lead to strategies that limit pathogen surface colonization and reduce the burden associated with the development of bacterial biofilms on medical devices.IMPORTANCEWe sought to demonstrate that bacterial biofilms are reservoirs for unknown molecules that antagonize bacterial adhesion. The use of natural strains representative ofEscherichia colispecies biodiversity showed that nonbiocidal antiadhesion polysaccharides are frequently found in mature biofilm extracts (bacterium-free suspensions which contain soluble molecules produced within the biofilm). Release of an antiadhesion polysaccharide confers a competitive advantage upon the producing strain against clinically relevant pathogens such asStaphylococcus aureus. Hence, exploring the biofilm environment provides a better understanding of bacterial interactions within complex communities and could lead to improved control of pathogen colonization.


2014 ◽  
Vol 80 (12) ◽  
pp. 3656-3666 ◽  
Author(s):  
Basanta Kumar Biswal ◽  
Ramzi Khairallah ◽  
Kareem Bibi ◽  
Alberto Mazza ◽  
Ronald Gehr ◽  
...  

ABSTRACTWastewater discharges may increase the populations of pathogens, includingEscherichia coli, and of antimicrobial-resistant strains in receiving waters. This study investigated the impact of UV and peracetic acid (PAA) disinfection on the prevalence of virulence and antimicrobial resistance genes in uropathogenicEscherichia coli(UPEC), the most abundantE. colipathotype in municipal wastewaters. Laboratory disinfection experiments were conducted on wastewater treated by physicochemical, activated sludge, or biofiltration processes; 1,766E. coliisolates were obtained for the evaluation. The target disinfection level was 200 CFU/100 ml, resulting in UV and PAA doses of 7 to 30 mJ/cm2and 0.9 to 2.0 mg/liter, respectively. The proportions of UPECs were reduced in all samples after disinfection, with an average reduction by UV of 55% (range, 22% to 80%) and by PAA of 52% (range, 11% to 100%). Analysis of urovirulence genes revealed that the decline in the UPEC populations was not associated with any particular virulence factor. A positive association was found between the occurrence of urovirulence and antimicrobial resistance genes (ARGs). However, the changes in the prevalence of ARGs in potential UPECs were different following disinfection, i.e., UV appears to have had no effect, while PAA significantly reduced the ARG levels. Thus, this study showed that both UV and PAA disinfections reduced the proportion of UPECs and that PAA disinfection also reduced the proportion of antimicrobial resistance gene-carrying UPEC pathotypes in municipal wastewaters.


Sign in / Sign up

Export Citation Format

Share Document