scholarly journals Light And Oxygen Impelling Rubrivivax Gelatinosus Directly Used Food Processing Wastewater To Accumulate Poly-β-Hydroxybutyrate, 5-Aminolevulinic Acid, Pigment

Author(s):  
Pan Wu ◽  
Xiaohan Xu

Abstract Background: Rubrivivax gelatinosus have the advantage of using wastewater to realize biomass recovery. However, they still cannot be large-scale applied because they cannot directly treat the wastewater containing macromolecular organics. Thus, this paper investigated the effect of light-oxygen condition on Rubrivivax gelatinosus (R. gelatinosus) directly recycling wastewater containing macromolecular organics to produce biomass, poly-β-hydroxybutyrate (PHB), 5-Aminolevulinic acid (5-ALA), pigment.Results: R. gelatinosus directly treated the macromolecules organic (soybean protein and starch) wastewaters and achieved biomass recovery under light-anaerobic and light-micro oxygen in six conditions. COD, protein, starch removals for two wastewaters all reached above 70%. Renewable bio-resource such as biomass, PHB, 5-ALA, pigment productions were 10 times of initial content. Theoretical analysis indicated that light activated two component signal pathway by stimulating its first hk gene expression, which regulated synthesis of protease and amylase. However, oxygen concentration decided the level of gene expression and the amount of enzymes. When oxygen was at micro-oxygen or anaerobic, above these expression and synthesis were conducted. Conclusion: In summary, this study expanded the view point ignored by traditional theory. It was realized that PNSB directly treated wastewater and accumulated nutrients (biomass, PHB, pigment and 5-ALA) for recycling, which reduced the secondary pollution of excess sludge to the environment.

2020 ◽  
Author(s):  
Lungwani Muungo

The purpose of this review is to evaluate progress inmolecular epidemiology over the past 24 years in canceretiology and prevention to draw lessons for futureresearch incorporating the new generation of biomarkers.Molecular epidemiology was introduced inthe study of cancer in the early 1980s, with theexpectation that it would help overcome some majorlimitations of epidemiology and facilitate cancerprevention. The expectation was that biomarkerswould improve exposure assessment, document earlychanges preceding disease, and identify subgroupsin the population with greater susceptibility to cancer,thereby increasing the ability of epidemiologic studiesto identify causes and elucidate mechanisms incarcinogenesis. The first generation of biomarkers hasindeed contributed to our understanding of riskandsusceptibility related largely to genotoxic carcinogens.Consequently, interventions and policy changes havebeen mounted to reduce riskfrom several importantenvironmental carcinogens. Several new and promisingbiomarkers are now becoming available for epidemiologicstudies, thanks to the development of highthroughputtechnologies and theoretical advances inbiology. These include toxicogenomics, alterations ingene methylation and gene expression, proteomics, andmetabonomics, which allow large-scale studies, includingdiscovery-oriented as well as hypothesis-testinginvestigations. However, most of these newer biomarkershave not been adequately validated, and theirrole in the causal paradigm is not clear. There is a needfor their systematic validation using principles andcriteria established over the past several decades inmolecular cancer epidemiology.


Author(s):  
Ekaterina Bourova-Flin ◽  
Samira Derakhshan ◽  
Afsaneh Goudarzi ◽  
Tao Wang ◽  
Anne-Laure Vitte ◽  
...  

Abstract Background Large-scale genetic and epigenetic deregulations enable cancer cells to ectopically activate tissue-specific expression programmes. A specifically designed strategy was applied to oral squamous cell carcinomas (OSCC) in order to detect ectopic gene activations and develop a prognostic stratification test. Methods A dedicated original prognosis biomarker discovery approach was implemented using genome-wide transcriptomic data of OSCC, including training and validation cohorts. Abnormal expressions of silent genes were systematically detected, correlated with survival probabilities and evaluated as predictive biomarkers. The resulting stratification test was confirmed in an independent cohort using immunohistochemistry. Results A specific gene expression signature, including a combination of three genes, AREG, CCNA1 and DDX20, was found associated with high-risk OSCC in univariate and multivariate analyses. It was translated into an immunohistochemistry-based test, which successfully stratified patients of our own independent cohort. Discussion The exploration of the whole gene expression profile characterising aggressive OSCC tumours highlights their enhanced proliferative and poorly differentiated intrinsic nature. Experimental targeting of CCNA1 in OSCC cells is associated with a shift of transcriptomic signature towards the less aggressive form of OSCC, suggesting that CCNA1 could be a good target for therapeutic approaches.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ashley A. Krull ◽  
Deborah O. Setter ◽  
Tania F. Gendron ◽  
Sybil C. L. Hrstka ◽  
Michael J. Polzin ◽  
...  

Abstract Background Mesenchymal stromal cells (MSCs) have been studied with increasing intensity as clinicians and researchers strive to understand the ability of MSCs to modulate disease progression and promote tissue regeneration. As MSCs are used for diverse applications, it is important to appreciate how specific physiological environments may stimulate changes that alter the phenotype of the cells. One need for neuroregenerative applications is to characterize the spectrum of MSC responses to the cerebrospinal fluid (CSF) environment after their injection into the intrathecal space. Mechanistic understanding of cellular biology in response to the CSF environment may predict the ability of MSCs to promote injury repair or provide neuroprotection in neurodegenerative diseases. Methods In this study, we characterized changes in morphology, metabolism, and gene expression occurring in human adipose-derived MSCs cultured in human (hCSF) or artificial CSF (aCSF) as well as examined relevant protein levels in the CSF of subjects treated with MSCs for amyotrophic lateral sclerosis (ALS). Results Our results demonstrated that, under intrathecal-like conditions, MSCs retained their morphology, though they became quiescent. Large-scale transcriptomic analysis of MSCs revealed a distinct gene expression profile for cells cultured in aCSF. The aCSF culture environment induced expression of genes related to angiogenesis and immunomodulation. In addition, MSCs in aCSF expressed genes encoding nutritional growth factors to expression levels at or above those of control cells. Furthermore, we observed a dose-dependent increase in growth factors and immunomodulatory cytokines in CSF from subjects with ALS treated intrathecally with autologous MSCs. Conclusions Overall, our results suggest that MSCs injected into the intrathecal space in ongoing clinical trials remain viable and may provide a therapeutic benefit to patients.


2021 ◽  
Vol 22 (12) ◽  
pp. 6394
Author(s):  
Jacob Spinnen ◽  
Lennard K. Shopperly ◽  
Carsten Rendenbach ◽  
Anja A. Kühl ◽  
Ufuk Sentürk ◽  
...  

For in vitro modeling of human joints, osteochondral explants represent an acceptable compromise between conventional cell culture and animal models. However, the scarcity of native human joint tissue poses a challenge for experiments requiring high numbers of samples and makes the method rather unsuitable for toxicity analyses and dosing studies. To scale their application, we developed a novel method that allows the preparation of up to 100 explant cultures from a single human sample with a simple setup. Explants were cultured for 21 days, stimulated with TNF-α or TGF-β3, and analyzed for cell viability, gene expression and histological changes. Tissue cell viability remained stable at >90% for three weeks. Proteoglycan levels and gene expression of COL2A1, ACAN and COMP were maintained for 14 days before decreasing. TNF-α and TGF-β3 caused dose-dependent changes in cartilage marker gene expression as early as 7 days. Histologically, cultures under TNF-α stimulation showed a 32% reduction in proteoglycans, detachment of collagen fibers and cell swelling after 7 days. In conclusion, thin osteochondral slice cultures behaved analogously to conventional punch explants despite cell stress exerted during fabrication. In pharmacological testing, both the shorter diffusion distance and the lack of need for serum in the culture suggest a positive effect on sensitivity. The ease of fabrication and the scalability of the sample number make this manufacturing method a promising platform for large-scale preclinical testing in joint research.


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 772
Author(s):  
Seonghun Kim ◽  
Seockhun Bae ◽  
Yinhua Piao ◽  
Kyuri Jo

Genomic profiles of cancer patients such as gene expression have become a major source to predict responses to drugs in the era of personalized medicine. As large-scale drug screening data with cancer cell lines are available, a number of computational methods have been developed for drug response prediction. However, few methods incorporate both gene expression data and the biological network, which can harbor essential information about the underlying process of the drug response. We proposed an analysis framework called DrugGCN for prediction of Drug response using a Graph Convolutional Network (GCN). DrugGCN first generates a gene graph by combining a Protein-Protein Interaction (PPI) network and gene expression data with feature selection of drug-related genes, and the GCN model detects the local features such as subnetworks of genes that contribute to the drug response by localized filtering. We demonstrated the effectiveness of DrugGCN using biological data showing its high prediction accuracy among the competing methods.


GigaScience ◽  
2020 ◽  
Vol 9 (11) ◽  
Author(s):  
Alexandra J Lee ◽  
YoSon Park ◽  
Georgia Doing ◽  
Deborah A Hogan ◽  
Casey S Greene

Abstract Motivation In the past two decades, scientists in different laboratories have assayed gene expression from millions of samples. These experiments can be combined into compendia and analyzed collectively to extract novel biological patterns. Technical variability, or "batch effects," may result from combining samples collected and processed at different times and in different settings. Such variability may distort our ability to extract true underlying biological patterns. As more integrative analysis methods arise and data collections get bigger, we must determine how technical variability affects our ability to detect desired patterns when many experiments are combined. Objective We sought to determine the extent to which an underlying signal was masked by technical variability by simulating compendia comprising data aggregated across multiple experiments. Method We developed a generative multi-layer neural network to simulate compendia of gene expression experiments from large-scale microbial and human datasets. We compared simulated compendia before and after introducing varying numbers of sources of undesired variability. Results The signal from a baseline compendium was obscured when the number of added sources of variability was small. Applying statistical correction methods rescued the underlying signal in these cases. However, as the number of sources of variability increased, it became easier to detect the original signal even without correction. In fact, statistical correction reduced our power to detect the underlying signal. Conclusion When combining a modest number of experiments, it is best to correct for experiment-specific noise. However, when many experiments are combined, statistical correction reduces our ability to extract underlying patterns.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yanan Ren ◽  
Ting-You Wang ◽  
Leah C. Anderton ◽  
Qi Cao ◽  
Rendong Yang

Abstract Background Long non-coding RNAs (lncRNAs) are a growing focus in cancer research. Deciphering pathways influenced by lncRNAs is important to understand their role in cancer. Although knock-down or overexpression of lncRNAs followed by gene expression profiling in cancer cell lines are established approaches to address this problem, these experimental data are not available for a majority of the annotated lncRNAs. Results As a surrogate, we present lncGSEA, a convenient tool to predict the lncRNA associated pathways through Gene Set Enrichment Analysis of gene expression profiles from large-scale cancer patient samples. We demonstrate that lncGSEA is able to recapitulate lncRNA associated pathways supported by literature and experimental validations in multiple cancer types. Conclusions LncGSEA allows researchers to infer lncRNA regulatory pathways directly from clinical samples in oncology. LncGSEA is written in R, and is freely accessible at https://github.com/ylab-hi/lncGSEA.


2012 ◽  
Vol 12 (5) ◽  
pp. 628-636 ◽  
Author(s):  
Zuzana Kadlecova ◽  
Sophie Nallet ◽  
David L. Hacker ◽  
Lucia Baldi ◽  
Harm-Anton Klok ◽  
...  

2015 ◽  
Vol 23 (3) ◽  
pp. 617-626 ◽  
Author(s):  
Nophar Geifman ◽  
Sanchita Bhattacharya ◽  
Atul J Butte

Abstract Objective Cytokines play a central role in both health and disease, modulating immune responses and acting as diagnostic markers and therapeutic targets. This work takes a systems-level approach for integration and examination of immune patterns, such as cytokine gene expression with information from biomedical literature, and applies it in the context of disease, with the objective of identifying potentially useful relationships and areas for future research. Results We present herein the integration and analysis of immune-related knowledge, namely, information derived from biomedical literature and gene expression arrays. Cytokine-disease associations were captured from over 2.4 million PubMed records, in the form of Medical Subject Headings descriptor co-occurrences, as well as from gene expression arrays. Clustering of cytokine-disease co-occurrences from biomedical literature is shown to reflect current medical knowledge as well as potentially novel relationships between diseases. A correlation analysis of cytokine gene expression in a variety of diseases revealed compelling relationships. Finally, a novel analysis comparing cytokine gene expression in different diseases to parallel associations captured from the biomedical literature was used to examine which associations are interesting for further investigation. Discussion We demonstrate the usefulness of capturing Medical Subject Headings descriptor co-occurrences from biomedical publications in the generation of valid and potentially useful hypotheses. Furthermore, integrating and comparing descriptor co-occurrences with gene expression data was shown to be useful in detecting new, potentially fruitful, and unaddressed areas of research. Conclusion Using integrated large-scale data captured from the scientific literature and experimental data, a better understanding of the immune mechanisms underlying disease can be achieved and applied to research.


Sign in / Sign up

Export Citation Format

Share Document