scholarly journals Metataxonomic Review To Elucidate The Role of The Microbiome In Celiac Disease Across The Gastrointestinal Tract.

Author(s):  
Juliana Arcila ◽  
Viviana Loria-Kohen ◽  
Ana Ramírez de Molina ◽  
Enrique Carrillo de Santa Pau ◽  
Laura Judith Judith Zambrano

Abstract Background: Dysbiosis of the microbiome has been related to the Celiac disease (CeD) progress, an autoimmune disease characterised by gluten intolerance developed in genetically susceptible individuals under certain environmental factors. The microbiome contributes to CeD pathophysiology modulating the immune response by the action of short-chain fatty acids (SCFA), affecting gut barrier integrity allowing the entrance of gluten derived proteins, and degrading immunogenic peptides of gluten through endoprolyl peptidase enzymes. Results: We reviewed state of the art in taxonomic composition for CeD and compiled the larger dataset of 16S prokaryotic ribosomal RNA (rRNA) gene high-throughput sequencing for consensus profiling. We present for the first time an integrative analysis of metataxonomic data from CeD patients, including samples from different body sites (saliva, pharynx, duodenum, and stool). We found the presence of coordinated changes through the gastrointestinal tract characterised by an increase in Actinobacteria species in the upper tract (pharynx and duodenum), and an increase in Proteobacteria in the lower tract (duodenum and stool), as well as site-specific changes evidencing a dysbiosis in CeD patients' microbiota. Moreover, we described the effect of adherence to a gluten-free diet (GFD) evidenced by an increase in beneficial bacteria and a decrease in some Betaproteobacteriales but not fully restoring CeD-related dysbiosis. Conclusions: We illustrate that the gut microbiota acts as an enhancer of immune response in CeD through the production of lipopolysaccharides and other bacterial components that activate the immune response and by decrease SCFA producers bacteria. Furthermore, microbial changes observed through the gastrointestinal tract of CeD patients may help manage the disease and follow-up GFD treatment.

2021 ◽  
Author(s):  
Juliana Estefania Arcila Galvis ◽  
Viviana Loria-Kohen ◽  
Ana Ramirez de Molina ◽  
Enrique Castillo de Santa Pau ◽  
Laura Judith Marcos-Zambrano

Dysbiosis of the microbiome has been related to the Celiac disease (CeD) progress, an autoimmune disease characterised by gluten intolerance developed in genetically susceptible individuals under certain environmental factors. The microbiome contributes to CeD pathophysiology modulating the immune response by the action of short-chain fatty acids (SCFA), affecting gut barrier integrity allowing the entrance of gluten derived proteins, and degrading immunogenic peptides of gluten through endoprolyl peptidase enzymes. We reviewed state of the art in taxonomic composition for CeD and compiled the larger dataset of 16S prokaryotic ribosomal RNA (rRNA) gene high-throughput sequencing for consensus profiling. We present for the first time an integrative analysis of metataxonomic data from CeD patients, including samples from different body sites (saliva, pharynx, duodenum, and stool). We found the presence of coordinated changes through the gastrointestinal tract characterised by an increase in Actinobacteria species in the upper tract (pharynx and duodenum), and an increase in Proteobacteria in the lower tract (duodenum and stool), as well as site-specific changes evidencing a dysbiosis in CeD patients' microbiota. Moreover, we described the effect of adherence to a gluten-free diet (GFD) evidenced by an increase in beneficial bacteria and a decrease in some Betaproteobacteriales but not fully restoring CeD-related dysbiosis. We illustrate that the gut microbiota acts as an enhancer of immune response in CeD through the production of lipopolysaccharides and other bacterial components that activate the immune response and by decrease SCFA producers bacteria. Furthermore, microbial changes observed through the gastrointestinal tract of CeD patients may help manage the disease and follow-up GFD treatment.


Animals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 698 ◽  
Author(s):  
Vladimir Zmrhal ◽  
Petr Slama

Although the immunomodulatory properties of prebiotics were demonstrated many years ago in poultry, not all mechanisms of action are yet clear. Dendritic cells (DCs) are the main antigen-presenting cells orchestrating the immune response in the chicken gastrointestinal tract, and they are the first line of defense in the immune response. Despite the crucial role of DCs in prebiotic immunomodulatory properties, information is lacking about interaction between prebiotics and DCs in an avian model. Mannan-oligosaccharides, β-glucans, fructooligosaccharides, and chitosan-oligosaccharides are the main groups of prebiotics having immunomodulatory properties. Because pathogen-associated molecular patterns on these prebiotics are recognized by many receptors of DCs, prebiotics can mimic activation of DCs by pathogens. Short-chain fatty acids are products of prebiotic fermentation by microbiota, and their anti-inflammatory properties have also been demonstrated in DCs. This review summarizes current knowledge about avian DCs in the gastrointestinal tract, and for the first-time, their role in the immunomodulatory properties of prebiotics within an avian model.


2020 ◽  
pp. 49-57
Author(s):  
S. V. Orlova ◽  
E. A. Nikitina ◽  
L. I. Karushina ◽  
Yu. A. Pigaryova ◽  
O. E. Pronina

Vitamin A (retinol) is one of the key elements for regulating the immune response and controls the division and differentiation of epithelial cells of the mucous membranes of the bronchopulmonary system, gastrointestinal tract, urinary tract, eyes, etc. Its significance in the context of the COVID‑19 pandemic is difficult to overestimate. However, a number of studies conducted in the past have associated the additional intake of vitamin A with an increased risk of developing cancer, as a result of which vitamin A was practically excluded from therapeutic practice in developed countries. Our review highlights the role of vitamin A in maintaining human health and the latest data on its effect on the development mechanisms of somatic pathology.


Biomolecules ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 98
Author(s):  
Lidia Błaszczyk ◽  
Agnieszka Waśkiewicz ◽  
Karolina Gromadzka ◽  
Katarzyna Mikołajczak ◽  
Jerzy Chełkowski

The occurrence and diversity of Lecanicillium and Sarocladium in maize seeds and their role in this cereal are poorly understood. Therefore, the present study aimed to investigate Sarocladium and Lecanicillium communities found in endosphere of maize seeds collected from fields in Poland and their potential to form selected bioactive substances. The sequencing of the internally transcribed spacer regions 1 (ITS 1) and 2 (ITS2) and the large-subunit (LSU, 28S) of the rRNA gene cluster resulted in the identification of 17 Sarocladium zeae strains, three Sarocladium strictum and five Lecanicillium lecanii isolates. The assay on solid substrate showed that S. zeae and S. strictum can synthesize bassianolide, vertilecanin A, vertilecanin A methyl ester, 2-decenedioic acid and 10-hydroxy-8-decenoic acid. This is also the first study revealing the ability of these two species to produce beauvericin and enniatin B1, respectively. Moreover, for the first time in the present investigation, pyrrocidine A and/or B have been annotated as metabolites of S. strictum and L. lecanii. The production of toxic, insecticidal and antibacterial compounds in cultures of S. strictum, S. zeae and L. lecanii suggests the requirement to revise the approach to study the biological role of fungi inhabiting maize seeds.


2021 ◽  
Vol 22 (7) ◽  
pp. 3687
Author(s):  
Joanna Homa ◽  
Alina Klosowska ◽  
Magdalena Chadzinska

Arginase is the manganese metalloenzyme catalyzing the conversion of l-arginine to l-ornithine and urea. In vertebrates, arginase is involved in the immune response, tissue regeneration, and wound healing and is an important marker of alternative anti-inflammatory polarization of macrophages. In invertebrates, data concerning the role of arginase in these processes are very limited. Therefore, in the present study, we focused on the changes in arginase activity in the coelomocytes of Eisenia andrei. We studied the effects of lipopolysaccharide (LPS), hydrogen peroxide (H2O2), heavy metals ions (e.g., Mn2+), parasite infection, wound healing, and short-term fasting (5 days) on arginase activity. For the first time in earthworms, we described arginase activity in the coelomocytes and found that it can be up-regulated upon in vitro stimulation with LPS and H2O2 and in the presence of Mn2+ ions. Moreover, arginase activity was also up-regulated in animals in vivo infected with nematodes or experiencing segment amputation, but not in fasting earthworms. Furthermore, we confirmed that the activity of coelomocyte arginase can be suppressed by l-norvaline. Our studies strongly suggest that similarly to the vertebrates, also in the earthworms, coelomocyte arginase is an important element of the immune response and wound healing processes.


2015 ◽  
Vol 411 (1-2) ◽  
pp. 341-349 ◽  
Author(s):  
Giuseppe Iacomino ◽  
Angela Marano ◽  
Ilaria Stillitano ◽  
Vera Rotondi Aufiero ◽  
Gaetano Iaquinto ◽  
...  

2020 ◽  
Author(s):  
E Niccolai ◽  
E Russo ◽  
S Baldi ◽  
F Ricci ◽  
G Nannini ◽  
...  

ABSTRACTBackgroundColorectal cancer (CRC) is a widespread disease that represents an example of chronic inflammation-associated tumor. In fact, the immune system, besides protecting the host from developing tumors, can support the CRC progression. In this scenario, the gut microbiota (GM) is essential to modulate immune responses and a dysbiotic condition can favor chronic/abnormal immune activation that support the tumor growth. GM can elicit the production of cytokines, influencing the immunostimulatory or immunosuppressive reactions, such as the tendency to mount Th1, Th17, Tregs or Th9 responses that play different roles towards colon cancer. Paradigmatic is the role of IL-9 that can both promote tumor progression in hematological malignancies and inhibit tumorigenesis in solid cancers. Therefore, to investigate the microbiota-immunity axis in CRC patients is crucial to well understand the cancer development with positive relapses in prevention and treatment.AimThe cellular and molecular characterization of the immune response and the evaluation of GM composition in healthy and tumor mucosa, focusing on the correlation between cytokines’ profile and GM signature.MethodsWe collected tumoral (CRC) and healthy (CRC-S) mucosa samples of 45 CRC patients. For each sample, we characterized the Tissue Infiltrating Lymphocytes (TIL)’s subset profile and the GM composition. In addition, in 14 CRC patients, we evaluated the CRC and CRC-S molecular inflammatory response (26 cytokines/chemokines) and we correlated this profile with GM composition using the Dirichlet Multinomial Regression.ResultsThe analysis of T cells subsets distribution showed that CRC samples displayed higher percentages of Th17, Th2, Tregs, Tc17, Tc1/Tc17, and Tcreg, compared to CRC-S. Notably, also the number of Th9 was higher, even if not significantly, in CRC tissue compared to healthy one. In addition, we found that MIP-1α, IL-1β, IL-2, IP-10, IL-6, IL-8, IL-17A, IFN-γ, TNF-α, MCP-1, IL-1α, P-selectin and IL-9 were significantly increased in CRC compared to CRC-S. Moreover, the GM analysis revealed that CRC samples had significantly higher levels of Fusobacteria, Proteobacteria, Fusobacterium, Ruminococcus2 (Lachnospiraceae family) and Ruminococcus (Ruminococcaceae family) than CRC-S. Finally, we found that the abundance of Prevotella spp in CRC samples was negatively correlated with IL-17A and positively with IL-9. In addition, the abundance of Bacteroides and Escherichia/Shigella species in CRC samples showed a negative association with IL-9 and IP-10 respectively.ConclusionsOur data show a clear dissimilarity of inflammatory profile and GM composition between the tumor and the adjacent healthy tissue, displaying the generation of a peculiar CRC microenvironment. Interestingly, relating the tissue cytokine profile with the GM composition, we confirmed the presence of a bidirectional crosstalk between the immune response and the host’s commensal microorganisms; in detail, we documented for the first time that Prevotella spp. and Bacteroides spp. are correlated (positively and negatively, respectively) with the IL-9, whose role in CRC development is still debated.


Diversity ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 361
Author(s):  
Lei Wu ◽  
Xinqiang Xie ◽  
Jumei Zhang ◽  
Yu Ding ◽  
Qingping Wu

Healthy longevity is associated with many factors, however, the potential correlation between longevity and microbiota remains elusive. To address this, we explored environmental microbiota from one of the world’s longevity townships in China. We used 16S rRNA gene high-throughput sequencing to analyze the composition and function of water microbiota. The composition and diversity of water microbiota significantly differed between the towns. Lactobacillus, Streptococcus, Bacteroides, Faecalibacterium, and Stenotrophomonas were only dominant in Xinpu, a town with an exceptionally high centenarian population. Several biomarkers were identified, including Flavobacterium, Acinetobacter, Paracoccus, Lactobacillales, Psychrobacter, Bacteroides, Ruminococcaceae, and Faecalibacterium, and these shown to be responsible for the significant differences between towns. The main species contributing to the differences between towns were Cyanobacteria, Cupriavidus and Ralstonia. Based on KEGG pathways showed that the predicted metabolic characteristics of the water microbiota in Xinpu towns were significantly different to those of the other towns. The results revealed significant differences in the composition and diversity of water microbiota in the longevity township. These findings provide a foundation for further research on the role of water microbiota in healthy longevity.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Jessica Chopyk ◽  
Daniel J. Nasko ◽  
Sarah Allard ◽  
Anthony Bui ◽  
Mihai Pop ◽  
...  

Abstract Background Ponds are important freshwater habitats that support both human and environmental activities. However, relative to their larger counterparts (e.g. rivers, lakes), ponds are understudied, especially with regard to their microbial communities. Our study aimed to fill this knowledge gap by using culture-independent, high-throughput sequencing to assess the dynamics, taxonomy, and functionality of bacterial and viral communities in a freshwater agricultural pond. Results Water samples (n = 14) were collected from a Mid-Atlantic agricultural pond between June 2017 and May 2018 and filtered sequentially through 1 and 0.2 μm filter membranes. Total DNA was then extracted from each filter, pooled, and subjected to 16S rRNA gene and shotgun sequencing on the Illumina HiSeq 2500 platform. Additionally, on eight occasions water filtrates were processed for viral metagenomes (viromes) using chemical concentration and then shotgun sequenced. A ubiquitous freshwater phylum, Proteobacteria was abundant at all sampling dates throughout the year. However, environmental characteristics appeared to drive the structure of the community. For instance, the abundance of Cyanobacteria (e.g. Nostoc) increased with rising water temperatures, while a storm event appeared to trigger an increase in overall bacterial diversity, as well as the relative abundance of Bacteroidetes. This event was also associated with an increase in the number of antibiotic resistance genes. The viral fractions were dominated by dsDNA of the order Caudovirales, namely Siphoviridae and Myovirdae. Conclusions Overall, this study provides one of the largest datasets on pond water microbial ecology to date, revealing seasonal trends in the microbial taxonomic composition and functional potential.


Sign in / Sign up

Export Citation Format

Share Document