Identification and Validation of a Novel 16-Gene Prognostic Signature for Patients with Breast Cancer

Author(s):  
Zhenhua Zhong ◽  
Wenqiang Jiang ◽  
Jing Zhang ◽  
Zhanwen Li ◽  
Fengfeng Fan

Abstract Background: Despite increased early diagnosis and improved treatment in breast cancer (BRCA) patients, prognosis prediction is still a challenging task due to the disease heterogeneity. This study was to identify a novel gene signature that can accurately evaluate BRCA patient survival. Methods: The gene expression and clinical data of BRCA patients were collected from The Cancer Genome Atlas (TCGA) and the Molecular Taxonomy of BRCA International Consortium (METABRIC) databases. Genes associated with prognosis were determined by Kaplan–Meier survival analysis and multivariate Cox regression analysis. A prognostic 16-gene score was established with linear combination of 16 genes. The prognostic value of the signature was validated in the METABRIC dataset. Gene expression analysis was performed to investigate the diagnostic values of 16 genes. Results: The 16-gene score was associated with shortened overall survival in BRCA patients independently of clinicopathological characteristics. The signalling pathways of cell cycle, oocyte meiosis, RNA degradation, progesterone mediated oocyte maturation and DNA replication were the top five most enriched pathways in the high 16-gene score group. The 16-gene nomogram incorporating the survival‐related clinical factors showed improved prediction accuracies for 1-year, 3-year and 5‐year survival (area under curve [AUC] = 0.91, 0.79 and 0.77 respectively). MORN3, IGJ, DERL1 exhibited high accuracy in differentiating BRCA tissues from normal breast tissues (AUC > 0.80 for all cases). Conclusions: The 16-gene profile provides novel insights into the identification of BRCA with a high risk of death, which eventually guides treatment decision making.

2020 ◽  
Author(s):  
Xing Chen ◽  
Junjie Zheng ◽  
Min ling Zhuo ◽  
Ailong Zhang ◽  
Zhenhui You

Abstract Background: Breast cancer (BRCA) represents the most common malignancy among women worldwide that with high mortality. Radiotherapy is a prevalent therapeutic for BRCA that with heterogeneous effectiveness among patients. Methods: we proposed to develop a gene expression-based signature for BRCA radiotherapy sensitivity prediction. Gene expression profiles of BRCA samples from the Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) were obtained and used as training and independent testing dataset, respectively. Differential expression genes (DEGs) in BRCA tumor samples compared with their paracancerous samples in the training set were identified by using edgeR Bioconductor package followed by dimensionality reduction through autoencoder method and univariate Cox regression analysis to screen genes among DEGs that with significant prognosis significance in patients that were previously treated with radiation. LASSO Cox regression method was applied to screen optimal genes for constructing radiotherapy sensitivity prediction signature. Results: 603 DEGs were obtained in BRCA tumor samples, and seven out of which were retained after univariate cox regression analysis. LASSO Cox regression analysis finally remained six genes based on which the radiotherapy sensitivity prediction model was constructed. The signature was proved to be robust in both training and independent testing sets and an independent marker for BRCA radiotherapy sensitivity prediction. Conclusions: this study should be helpful for BRCA patients’ therapeutics selection and clinical decision.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Derui Yan ◽  
Mingjing Shen ◽  
Zixuan Du ◽  
Jianping Cao ◽  
Ye Tian ◽  
...  

Adjuvant radiotherapy is one of the main treatment methods for breast cancer, but its clinical benefit depends largely on the characteristics of the patient. This study aimed to explore the relationship between the expression of zinc finger (ZNF) gene family proteins and the radiosensitivity of breast cancer patients. Clinical and gene expression data on a total of 976 breast cancer samples were obtained from The Cancer Genome Atlas (TCGA) database. ZNF gene expression was dichotomized into groups with a higher or lower level than the median level of expression. Univariate and multivariate Cox regression analyses were used to evaluate the relationship between ZNF gene expression levels and radiosensitivity. The Molecular Taxonomy Data of the International Federation of Breast Cancer (METABRIC) database was used for validation. The results revealed that 4 ZNF genes were possible radiosensitivity markers. High expression of ZNF644 and low expression levels of the other 3 genes (ZNF341, ZNF541, and ZNF653) were related to the radiosensitivity of breast cancer. Hierarchical cluster, Cox, and CoxBoost analysis based on these 4 ZNF genes indicated that patients with a favorable 4-gene signature had better overall survival on radiotherapy. Thus, this 4-gene signature may have value for selecting those patients most likely to benefit from radiotherapy. ZNF gene clusters could act as radiosensitivity signatures for breast cancer patients and may be involved in determining the radiosensitivity of cancer.


Cancers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 5342
Author(s):  
Xiaowei Wang ◽  
Wenjia Su ◽  
Dabei Tang ◽  
Jing Jing ◽  
Jing Xiong ◽  
...  

Tumor-immune cell compositions and immune checkpoints comprehensively affect TNBC outcomes. With the significantly improved survival rate of TNBC patients treated with ICI therapies, a biomarker integrating multiple aspects of TIME may have prognostic value for improving the efficacy of ICI therapy. Immune-related hub genes were identified with weighted gene co-expression network analysis and differential gene expression assay using The Cancer Genome Atlas TNBC data set (n = 115). IRGPI was constructed with Cox regression analysis. Immune cell compositions and TIL status were analyzed with CIBERSORT and TIDE. The discovery was validated with the Molecular Taxonomy of Breast Cancer International Consortium data set (n = 196) and a patient cohort from our hospital. Tumor expression or serum concentrations of CCL5, CCL25, or PD-L1 were determined with immunohistochemistry or ELISA. The constructed IRGPI was composed of CCL5 and CCL25 genes and was negatively associated with the patient’s survival. IRGPI also predicts the compositions of M0 and M2 macrophages, memory B cells, CD8+ T cells, activated memory CD4 T cells, and the exclusion and dysfunction of TILs, as well as PD-1 and PD-L1 expression of TNBC. IRGPI is a promising biomarker for predicting the prognosis and multiple immune characteristics of TNBC.


2020 ◽  
Author(s):  
Gaochen Lan ◽  
Xiaoling Yu ◽  
Yanna Zhao ◽  
Jinjian Lan ◽  
Wan Li ◽  
...  

Abstract Background: Breast cancer is the most common malignant disease among women. At present, more and more attention has been paid to long non-coding RNAs (lncRNAs) in the field of breast cancer research. We aimed to investigate the expression profiles of lncRNAs and construct a prognostic lncRNA for predicting the overall survival (OS) of breast cancer.Methods: The expression profiles of lncRNAs and clinical data with breast cancer were obtained from The Cancer Genome Atlas (TCGA). Differentially expressed lncRNAs were screened out by R package (limma). The survival probability was estimated by the Kaplan‑Meier Test. The Cox Regression Model was performed for univariate and multivariate analysis. The risk score (RS) was established on the basis of the lncRNAs’ expression level (exp) multiplied regression coefficient (β) from the multivariate cox regression analysis with the following formula: RS=exp a1 * β a1 + exp a2 * β a2 +……+ exp an * β an. Functional enrichment analysis was performed by Metascape.Results: A total of 3404 differentially expressed lncRNAs were identified. Among them, CYTOR, MIR4458HG and MAPT-AS1 were significantly associated with the survival of breast cancer. Finally, The RS could predict OS of breast cancer (RS=exp CYTOR * β CYTOR + exp MIR4458HG * β MIR4458HG + exp MAPT-AS1 * β MAPT-AS1). Moreover, it was confirmed that the three-lncRNA signature could be an independent prognostic biomarker for breast cancer (HR=3.040, P=0.000).Conclusions: This study established a three-lncRNA signature, which might be a novel prognostic biomarker for breast cancer.


2021 ◽  
Author(s):  
Wenxiang Zhang ◽  
Bolun Ai ◽  
Xiangyi Kong ◽  
Xiangyu Wang ◽  
Jie Zhai ◽  
...  

Abstract Background Triple-negative breast cancer (TNBC) is a specific histological type of breast cancer with a poor prognosis, early recurrence, which lacks durable chemotherapy responses and effective targeted therapies. We aimed to construct an accurate prognostic risk model based on homologous recombination deficiency (HRD) - gene expression profiles for improving prognosis prediction of TNBC. Methods Triple-negative breast cancer RNA sequencing data and sample clinical information were downloaded from the breast invasive carcinoma (BRCA) cohort in the Cancer Genome Atlas (TCGA) database. Combined with the HRD database, tumor samples were divided into two sets. We screened differentially expressed genes (DEGs) and then identified HRD-related prognostic genes using weighted gene co-expression network analysis (WGCNA) and Cox regression analysis. The least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression analysis were used to identifying key prognostic genes. Risk scores were calculated and compared with HRD score, Kaplan–Meier (KM) survival analysis were used to assess its prognostic power. GSE103091 dataset from GEO (Gene Expression Omnibus) database was used to validate the signature. Univariate and multivariate Cox regression were performed to independently verify the prognosis of the risk score. A nomogram was constructed and revealed by time-dependent ROC curves to guide clinical practice. Results We found that HRD tumor samples (HRD score > = 42) in TNBC patients were associated with poor overall survival (p = 0.027). We identified a total of 147 differential genes including 203 up-regulated and 213 down-regulated genes, among which 29 were prognosis-related genes. Through the LASSO method, 6 key prognostic genes ((MUCL1, IVL, FAM46C, CHI3L1, PRR15L, and CLEC3A) were selected and a 6-gene risk score was constructed. We found risk score was negatively associated with homologous recombination deficiency (HRD) scores (r = -0.22, p = 0.019). Compared with the low-risk group, Kaplan-Meier survival analysis shows that the high-risk group has an obvious poorer prognosis (P < 0.0001). Finally, we integrated the risk score model and clinical factors of TNBC (AJCC-stage, HRD score, T stage, and N stage) to construct a compound nomogram. Time-dependent ROC curves showed the risk score performed better in 1-, 3- and 5-year survival predictions compared with AJCC-stage. Conclusions Based on HRD gene expression data, our six HRD-related gene signature and nomogram could be practical and reliable tools for predicting OS in patients with TNBC.


2020 ◽  
Vol 11 ◽  
Author(s):  
Xin Qiu ◽  
Qin-Han Hou ◽  
Qiu-Yue Shi ◽  
Hai-Xing Jiang ◽  
Shan-Yu Qin

BackgroundIntratumoral oxidative stress (OS) has been associated with the progression of various tumors. However, OS has not been considered a candidate therapeutic target for pancreatic cancer (PC) owing to the lack of validated biomarkers.MethodsWe compared gene expression profiles of PC samples and the transcriptome data of normal pancreas tissues from The Cancer Genome Atlas (TCGA) and Genome Tissue Expression (GTEx) databases to identify differentially expressed OS genes in PC. PC patients’ gene profile from the Gene Expression Omnibus (GEO) database was used as a validation cohort.ResultsA total of 148 differentially expressed OS-related genes in PC were used to construct a protein-protein interaction network. Univariate Cox regression analysis, least absolute shrinkage, selection operator analysis revealed seven hub prognosis-associated OS genes that served to construct a prognostic risk model. Based on integrated bioinformatics analyses, our prognostic model, whose diagnostic accuracy was validated in both cohorts, reliably predicted the overall survival of patients with PC and cancer progression. Further analysis revealed significant associations between seven hub gene expression levels and patient outcomes, which were validated at the protein level using the Human Protein Atlas database. A nomogram based on the expression of these seven hub genes exhibited prognostic value in PC.ConclusionOur study provides novel insights into PC pathogenesis and provides new genetic markers for prognosis prediction and clinical treatment personalization for PC patients.


2021 ◽  
Vol 12 ◽  
Author(s):  
Saadia Ait Ssi ◽  
Dounia Chraa ◽  
Khadija El Azhary ◽  
Souha Sahraoui ◽  
Daniel Olive ◽  
...  

BackgroundGlioma is the most common type of primary brain tumor in adults. Patients with the most malignant form have an overall survival time of &lt;16 months. Although considerable progress has been made in defining the adapted therapeutic strategies, measures to counteract tumor escape have not kept pace, due to the developed resistance of malignant glioma. In fact, identifying the nature and role of distinct tumor-infiltrating immune cells in glioma patients would decipher potential mechanisms behind therapy failure.MethodsWe integrated into our study glioma transcriptomic datasets from the Cancer Genome Atlas (TCGA) cohort (154 GBM and 516 LGG patients). LM22 immune signature was built using CIBERSORT. Hierarchical clustering and UMAP dimensional reduction algorithms were applied to identify clusters among glioma patients either in an unsupervised or supervised way. Furthermore, differential gene expression (DGE) has been performed to unravel the top expressed genes among the identified clusters. Besides, we used the least absolute shrinkage and selection operator (LASSO) and Cox regression algorithm to set up the most valuable prognostic factor.ResultsOur study revealed, following gene enrichment analysis, the presence of two distinct groups of patients. The first group, defined as cluster 1, was characterized by the presence of immune cells known to exert efficient antitumoral immune response and was associated with better patient survival, whereas the second group, cluster 2, which exhibited a poor survival, was enriched with cells and molecules, known to set an immunosuppressive pro-tumoral microenvironment. Interestingly, we revealed that gene expression signatures were also consistent with each immune cluster function. A strong presence of activated NK cells was revealed in cluster 1. In contrast, potent immunosuppressive components such as regulatory T cells, neutrophils, and M0/M1/M2 macrophages were detected in cluster 2, where, in addition, inhibitory immune checkpoints, such as PD-1, CTLA-4, and TIM-3, were also significantly upregulated. Finally, Cox regression analysis further corroborated that tumor-infiltrating cells from cluster 2 exerted a significant impact on patient prognosis.ConclusionOur work brings to light the tight implication of immune components on glioma patient prognosis. This would contribute to potentially developing better immune-based therapeutic approaches.


2021 ◽  
Author(s):  
Jingyi Liu ◽  
Siyuan Tian ◽  
Yuwei Ling ◽  
Xinyi Zhang ◽  
Yan Li ◽  
...  

Abstract Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer that lacks effective therapeutic targets. Immunotherapy is considered as a novel treatment strategy for TNBC. However, only some patients could benefit from the treatment. Limited studies have comprehensively explored expression patterns and prognostic value of immune checkpoint genes (ICGs) in TNBC. In this study, we downloaded relevant ICGs expression profiles and clinical TNBC data from the Cancer Genome Atlas (TCGA) and the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) database. The least absolute shrinkage and selection operator (LASSO) Cox regression analysis was employed to develop a multi-gene signature for predicting the prognostic outcome. PDCD1, PDCD1LG2 and KIR3DL2 were identified as hub genes and incorporated into the model. This gene signature could stratify patients into two prognostic subgroups, and unfavorable clinical outcomes were observed in high-risk patients. The predictive performance was assessed by the receiver operating characteristic curves. Moreover, we also analyzed differences in immune status and therapeutic response between both groups. This novel gene signature may be served as a robust prognostic marker, but also an indicator reflecting immunotherapy response.


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3735
Author(s):  
Hara Polioudaki ◽  
Anastasia Mala ◽  
Eleni Gkimprixi ◽  
Maria A. Papadaki ◽  
Amanda Chantziou ◽  
...  

We aimed to evaluate the co-expression of PD-L1 and epithelial-mesenchymal markers in CTCs from metastatic breast cancer (MBC) patients and to determine if there is any relationship with patients’ outcome after eribulin treatment. Using cytospin preparations of peripheral blood mononuclear cells (PBMCs) from MBC patients treated with eribulin and a combination of immunocytochemistry and immunofluorescence, we quantified PD-L1, keratins and vimentin in single and cluster CTCs on days 1 and 8 of the first-treatment cycle. CTCs (n = 173) were found in 31 out of 38 patients. At baseline, the presence of cluster CTCs (p = 0.048), cluster mesenchymal CTCs (mCTCs) (p = 0.0003) or cluster PD-L1+mCTCs (p = 0.006) was associated with shorter overall survival (OS). In multivariate cox regression analysis, the detection of cluster mCTCs was the only parameter associated with increased risk of death (p = 0.024). On day 8 post-eribulin administration, PD-L1+mCTCs and especially single PD-L1+mCTCs decreased in 75% and 89% of patients, respectively. The detection of single PD-L1+mCTCs after eribulin treatment was correlated with shorter PFS (p = 0.047) and OS (p = 0.020). In conclusion, our study identified for the first time that cluster and single PD-L1+mCTCs subpopulations are of clinical significance in patients with MBC and highlighted the importance of CTC phenotyping during treatment with eribulin.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Xiaoying Zhou ◽  
Chuanguang Xiao ◽  
Tong Han ◽  
Shusheng Qiu ◽  
Meng Wang ◽  
...  

Abstract Background This study intended to determine important genes related to the prognosis and recurrence of breast cancer. Methods Gene expression data of breast cancer patients were downloaded from TCGA database. Breast cancer samples with recurrence and death were defined as poor disease-free survival (DFS) group, while samples without recurrence and survival beyond 5 years were defined as better DFS group. Another gene expression profile dataset (GSE45725) of breast cancer was downloaded as the validation data. Differentially expressed genes (DEGs) were screened between better and poor DFS groups, which were then performed function enrichment analysis. The DEGs that were enriched in the GO function and KEGG signaling pathway were selected for cox regression analysis and Logit regression (LR) model analysis. Finally, correlation analysis between LR model classification and survival prognosis was analyzed. Results Based on the breast cancer gene expression profile data in TCGA, 540 DEGs were screened between better DFS and poor DFS groups, including 177 downregulated and 363 upregulated DEGs. A total of 283 DEGs were involved in all GO functions and KEGG signaling pathways. Through LR model screening, 10 important feature DEGs were identified and validated, among which, ABCA3, CCL22, FOXJ1, IL1RN, KCNIP3, MAP2K6, and MRPL13, were significantly expressed in both groups in the two data sets. ABCA3, CCL22, FOXJ1, IL1RN, and MAP2K6 were good prognostic factors, while KCNIP3 and MRPL13 were poor prognostic factors. Conclusion ABCA3, CCL22, FOXJ1, IL1RN, and MAP2K6 may serve as good prognostic factors, while KCNIP3 and MRPL13 may be poor prognostic factors for the prognosis of breast cancer.


Sign in / Sign up

Export Citation Format

Share Document