scholarly journals Separability Analysis of Back-Scattering Coefficient of NovaSAR-1 S-band SAR datasets for different Land Use Land Cover (LULC) classes

Author(s):  
Ashutosh Bhardwaj ◽  
Ojasvi Saini ◽  
R. S. Chatterjee

Abstract NovaSAR-1 is a joint technology initiative of SSTL (Surrey Satellite Technology Ltd.), UK, and Airbus DS (former EADS Astrium Ltd, Stevenage, UK). The NovaSAR-1 mini-satellite was launched on 16 September 2018 and it is operating on the S-band frequency range, which is less common in Spaceborne Synthetic Aperture Radar (SAR) systems. Both higher and lower SAR frequency bands (L-band & X-band SAR) have their advantages as well as limitations in different kinds of applications. High frequency (X-band) SAR systems are useful for top surface information extraction such as the DSM generation. However, at the same time, more noise and lesser coherence issues are associated with high-frequency SAR systems. Low-frequency SAR (L-band) systems exhibit better ground penetration, high coherence, and low noise, but less precise scatterer level information. The S-band comes approximately in the middle of the X and L-band SAR frequency range and may be used as a trade-off between high and low-frequency SAR systems to have some advantages. In the presented study, the separability analysis of the radar backscattering coefficient of HH polarization (Stripmap and ScanSAR) of NovaSAR-1 S-band datasets corresponding to different land use and land covers (LULCs) has been done to analyze the potential of NovaSAR-1 S-band SAR data. The analysis was carried out for datasets acquired between 9th July 2019 to 15th July 2019 at 5 experimental sites in parts of six different Indian states (West Bengal, Maharashtra, Jharkhand, Odisha, Chhattisgarh, and Uttar Pradesh). The statistical analysis of σ० for five different sites of India for different LULCs, such as bare soil, forest, water, urban, cropland, and road features has been carried out. The range for minimum and maximum mean σ० values for urban, sub-urban, cropland, bare soil, barren land, forest, turbid water, road features, water with a smooth surface (calm water), and road features (airplane runway) were found to be -5.45 to 4.76, -11.14 to -5.21, -17.25 to -5.99, -18.15 to -13.44, -17.64 to -9.34, -17.17 to -14.34, -18.2 to -14.05, -27.29 to -23.76 and − 26.64 to -14.98 respectively. The range of σ० pixel values of calibrated datasets corresponding to different LULCs depicted that the data quality is good for the identification of various land covers. The separability analysis of the different land cover classes depicted that classes have good separability except for a few pairs of LULC. With the availability of fully polarimetric and InSAR data in the planned NISAR mission, the polarimetric scattering behaviour with phase information for InSAR will further be utilized.

1971 ◽  
Vol 36 (4) ◽  
pp. 527-537 ◽  
Author(s):  
Norman P. Erber

Two types of special hearing aid have been developed recently to improve the reception of speech by profoundly deaf children. In a different way, each special system provides greater low-frequency acoustic stimulation to deaf ears than does a conventional hearing aid. One of the devices extends the low-frequency limit of amplification; the other shifts high-frequency energy to a lower frequency range. In general, previous evaluations of these special hearing aids have obtained inconsistent or inconclusive results. This paper reviews most of the published research on the use of special hearing aids by deaf children, summarizes several unpublished studies, and suggests a set of guidelines for future evaluations of special and conventional amplification systems.


2021 ◽  
Vol 11 (4) ◽  
pp. 1932
Author(s):  
Weixuan Wang ◽  
Qinyan Xing ◽  
Qinghao Yang

Based on the newly proposed generalized Galerkin weak form (GGW) method, a two-step time integration method with controllable numerical dissipation is presented. In the first sub-step, the GGW method is used, and in the second sub-step, a new parameter is introduced by using the idea of a trapezoidal integral. According to the numerical analysis, it can be concluded that this method is unconditionally stable and its numerical damping is controllable with the change in introduced parameters. Compared with the GGW method, this two-step scheme avoids the fast numerical dissipation in a low-frequency range. To highlight the performance of the proposed method, some numerical problems are presented and illustrated which show that this method possesses superior accuracy, stability and efficiency compared with conventional trapezoidal rule, the Wilson method, and the Bathe method. High accuracy in a low-frequency range and controllable numerical dissipation in a high-frequency range are both the merits of the method.


2019 ◽  
Vol 9 (15) ◽  
pp. 3157 ◽  
Author(s):  
O ◽  
Jin ◽  
Choi

In this paper, we propose a compact four-port coplanar antenna for cognitive radio applications. The proposed antenna consists of a coplanar waveguide (CPW)-fed ultra-wideband (UWB) antenna and three inner rectangular loop antennas. The dimensions of the proposed antenna are 42 mm × 50 mm × 0.8 mm. The UWB antenna is used for spectrum sensing and fully covers the UWB spectrum of 3.1–10.6 GHz. The three loop antennas cover the UWB frequency band partially for communication purposes. The first loop antenna for the low frequency range operates from 2.96 GHz to 5.38 GHz. The second loop antenna is in charge of the mid band from 5.31 GHz to 8.62 GHz. The third antenna operates from 8.48 GHz to 11.02 GHz, which is the high-frequency range. A high isolation level (greater than 17.3 dB) is realized among the UWB antenna and three loop antennas without applying any additional decoupling structures. The realized gains of the UWB antenna and three loop antennas are greater than 2.7 dBi and 1.38 dBi, respectively.


2015 ◽  
Vol 655 ◽  
pp. 182-185
Author(s):  
Ke Lan Yan ◽  
Run Hua Fan ◽  
Min Chen ◽  
Kai Sun ◽  
Xu Ai Wang ◽  
...  

The phase structure, and electrical and magnetic properties of La0.7Sr0.3MnO3(LSMO)-xAg (xis the mole ratio,x=0, 0.3, 0.5) composite were investigated. It is found that the sample withx=0 is single phase; the samples withx=0.3 and 0.5 present three phase composite structure of the manganese oxide and Ag. With the increasing of Ag content, the grain size of the samples increases and the grain boundaries transition from fully faceted to partially faceted. The permittivity of spectrum (10 MHz - 1 GHz) and the theoretical simulation reveal that the plasma frequencyfpincrease with Ag content, due to the increasing of free electron concentration, which is further supported by the enhancement of conductivity. While for the permeability (μr'), theμr'decrease with the increasing of Ag content at low frequency range (f< 20 MHz), while at the relative high frequency range (f> 300 MHz), theμr'increased with Ag content. Therefore, the introduction of elemental Ag resulted in a higherμr'at the relative high frequency range.


2007 ◽  
Vol 280-283 ◽  
pp. 919-924
Author(s):  
M.S. Jogad ◽  
V.K. Shrikhande ◽  
A.H. Dyama ◽  
L.A. Udachan ◽  
Govind P. Kothiyal

AC and DC conductivities have been measured by using the real (e¢) and imaginary (e¢¢) parts of the dielectric constant data of glass and glass-ceramics (GC) at different temperatures in the rage 297-642K and in the frequency range 100 Hz to 10 MHz. Using Anderson –Stuart model, we have calculated the activation energy, which is observed to be lower than that of the DC conductivity. The analysis for glass/glass-ceramics indicates that the conductivity variation with frequency exhibits an initial linear region followed by nonlinear region with a maximum in the high-frequency region. The observed frequency dependence of ionic conductivity has been analyzed within the extended Anderson–Stuart model considering both the electrostatic and elastic strain terms. In glass/glassceramic the calculations based on the Anderson-Stuart model agree with the experimental observations in the low frequency region but at higher frequencies there is departure from measured data.


2018 ◽  
Vol 24 (2) ◽  
pp. 250-269 ◽  
Author(s):  
João Arthur Pompeu Pavanelli ◽  
João Roberto dos Santos ◽  
Lênio Soares Galvão ◽  
Maristela Xaud ◽  
Haron Abrahim Magalhães Xaud

Abstract: In northern Brazilian Amazon, the crops, savannahs and rainforests form a complex landscape where land use and land cover (LULC) mapping is difficult. Here, data from the Operational Land Imager (OLI)/Landsat-8 and Phased Array type L-band Synthetic Aperture Radar (PALSAR-2)/ALOS-2 were combined for mapping 17 LULC classes using Random Forest (RF) during the dry season. The potential thematic accuracy of each dataset was assessed and compared with results of the hybrid classification from both datasets. The results showed that the combination of PALSAR-2 HH/HV amplitudes with the reflectance of the six OLI bands produced an overall accuracy of 83% and a Kappa of 0.81, which represented an improvement of 6% in relation to the RF classification derived solely from OLI data. The RF models using OLI multispectral metrics performed better than RF models using PALSAR-2 L-band dual polarization attributes. However, the major contribution of PALSAR-2 in the savannahs was to discriminate low biomass classes such as savannah grassland and wooded savannah.


2021 ◽  
Vol 20 (2) ◽  
pp. 1-19
Author(s):  
Tahmid Anam Chowdhury ◽  
◽  
Md. Saiful Islam ◽  

Urban developments in the cities of Bangladesh are causing the depletion of natural land covers over the past several decades. One of the significant implications of the developments is a change in Land Surface Temperature (LST). Through LST distribution in different Land Use Land Cover (LULC) and a statistical association among LST and biophysical indices, i.e., Urban Index (UI), Bare Soil Index (BI), Normalized Difference Builtup Index (NDBI), Normalized Difference Bareness Index (NDBaI), Normalized Difference Vegetation Index (NDVI), and Modified Normalized Difference Water Index (MNDWI), this paper studied the implications of LULC change on the LST in Mymensingh city. Landsat TM and OLI/TIRS satellite images were used to study LULC through the maximum likelihood classification method and LSTs for 1989, 2004, and 2019. The accuracy of LULC classifications was 84.50, 89.50, and 91.00 for three sampling years, respectively. From 1989 to 2019, the area and average LST of the built-up category has been increased by 24.99% and 7.6ºC, respectively. Compared to vegetation and water bodies, built-up and barren soil regions have a greater LST each year. A different machine learning method was applied to simulate LULC and LST in 2034. A remarkable change in both LULC and LST was found through this simulation. If the current changing rate of LULC continues, the built-up area will be 59.42% of the total area, and LST will be 30.05ºC on average in 2034. The LST in 2034 will be more than 29ºC and 31ºC in 59.64% and 23.55% areas of the city, respectively.


Geophysics ◽  
1994 ◽  
Vol 59 (8) ◽  
pp. 1201-1210 ◽  
Author(s):  
Duff C. Stewart ◽  
Walter L. Anderson ◽  
Thomas P. Grover ◽  
Victor F. Labson

A new instrument designed for frequency‐domain sounding in the depth range 0–10 m uses short coil spacings of 5 m or less and a frequency range of 300 kHz to 30 MHz. In this frequency range, both conduction currents (controlled by electrical conductivity) and displacement currents (controlled by dielectric permittivity) are important. Several surface electromagnetic survey systems commonly used (generally with frequencies less than 60 kHz) are unsuitable for detailed investigation of the upper 5 m of the earth or, as with ground‐penetrating radar, are most effective in relatively resistive environments. Most computer programs written for interpretation of data acquired with the low‐frequency systems neglect displacement currents, and are thus unsuited for accurate high‐frequency modeling and interpretation. New forward and inverse computer programs are described that include displacement currents in layered‐earth models. The computer programs and this new instrument are used to evaluate the effectiveness of shallow high‐frequency soundings based on measurement of the tilt angle and the ellipticity of magnetic fields. Forward model studies indicate that the influence of dielectric permittivity provides the ability to resolve thin layers, especially if the instrument frequency range can be extended to 50 MHz. Field tests of the instrument and the inversion program demonstrate the potential for detailed shallow mapping wherein both the resistivity and the dielectric permittivity of layers are determined. Although data collection and inversion are much slower than for low‐frequency methods, additional information is obtained inasmuch as there usually is a permittivity contrast as well as a resistivity contrast at boundaries between different materials. Determination of dielectric permittivity is particularly important for hazardous waste site characterization because the presence of some contaminants may have little effect on observed resistivity but a large effect on observed permittivity.


2003 ◽  
Vol 6 (3) ◽  
pp. 213-225 ◽  
Author(s):  
MINNA LEHTONEN ◽  
MATTI LAINE

The present study investigated processing of morphologically complex words in three different frequency ranges in monolingual Finnish speakers and Finnish-Swedish bilinguals. By employing a visual lexical decision task, we found a differential pattern of results in monolinguals vs. bilinguals. Monolingual Finns seemed to process low frequency and medium frequency inflected Finnish nouns mostly by morpheme-based recognition but high frequency inflected nouns through full-form representations. In contrast, bilinguals demonstrated a processing delay for all inflections throughout the whole frequency range, suggesting decomposition for all inflected targets. This may reflect different amounts of exposure to the word forms in the two groups. Inflected word forms that are encountered very frequently will acquire full-form representations, which saves processing time. However, with the lower rates of exposure, which characterize bilingual individuals, full-form representations do not start to develop.


Author(s):  
Amin Khajehdezfuly

In this paper, a two-dimensional numerical model is developed to investigate the effect of rail pad stiffness on the wheel/rail force in a slab track with harmonic irregularity. The model consists of a vehicle, nonlinear Hertz spring, rail, rail pad, concrete slab, resilient layer, concrete base, and subgrade. The rail is simulated using the Timoshenko beam element for considering the effects of high-frequency excitation produced by short-wave irregularity. The results obtained from the model are compared with those available in the literature and from the field to prove the validity of the model. Through a parametric study, the effect of variations in rail pad stiffness, vehicle speed, and harmonic irregularity on the wheel/rail force is investigated. For the slab track without any irregularity, the wheel/rail force is at maximum when the vehicle speed reaches the critical speed. As the rail pad stiffness increases, the critical speed increases. When the amplitude of irregularity is high, wheel jumping phenomenon may occur. In this situation, as the vehicle speed and rail pad stiffness are increased, the dynamic wheel/rail force is increased. In the low-frequency range, the wheel/rail force increases as the rail pad stiffness increases. In the high-frequency range, the wheel/rail force increases as the rail pad stiffness is decreased.


Sign in / Sign up

Export Citation Format

Share Document