The Functional Examination of Conserved and Non-conserved lncRNA in Allotetraploid Gossypium hirsutum

2020 ◽  
Author(s):  
Xueying Guan ◽  
Luyao Wang ◽  
Jin Han ◽  
Kening Lu ◽  
Menglin Li ◽  
...  

Abstract Background The relationship between the lncRNA conservation level and its function is controversial. One of the technique barrier to address this question is how to define the conserved non-coding genes across species.Results We developed an evolutionary model using diploid and allotetraploid cotton species to identify 80% of the non-coding transcripts unique to the allotetraploid cotton in comparison with its diploid ancestors. This led us to define conserved lncRNA and non-conserved lncRNA based on their conservation throughout polyploid evolution. LncRNA expression was preferentially associated with the flanking protein-coding genes, indicating a regulatory role in cis in response to environmental stimuli. However, the conserved and non-conserved lncRNAs showed no difference in their levels of association with the expression of the flanking protein-coding genes. The 111 selected highly expressed conserved and non-conserved lncRNA candidates were subjected to a virus-induced gene silencing operation that was integrated with abiotic stress treatments. From the low-throughput, functional screening pilot test, we obtained candidate lncRNAs related to plant height, tolerance to drought and other abiotic stresses. Conclusions The conservation level of the lncRNAs may impact on their expression patterns and functions as individual case rather than in genome wide.

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Luyao Wang ◽  
Jin Han ◽  
Kening Lu ◽  
Menglin Li ◽  
Mengtao Gao ◽  
...  

Abstract Background An evolutionary model using diploid and allotetraploid cotton species identified 80 % of non-coding transcripts in allotetraploid cotton as being uniquely activated in comparison with its diploid ancestors. The function of the lncRNAs activated in allotetraploid cotton remain largely unknown. Results We employed transcriptome analysis to examine the relationship between the lncRNAs and mRNAs of protein coding genes (PCGs) in cotton leaf tissue under abiotic stresses. LncRNA expression was preferentially associated with that of the flanking PCGs. Selected highly-expressed lncRNA candidates (n = 111) were subjected to a functional screening pilot test in which virus-induced gene silencing was integrated with abiotic stress treatment. From this low-throughput screen, we obtained candidate lncRNAs relating to plant height and tolerance to drought and other abiotic stresses. Conclusions Low-throughput screen is an effective method to find functional lncRNA for further study. LncRNAs were more active in abiotic stresses than PCG expression, especially temperature stress. LncRNA XLOC107738 may take a cis-regulatory role in response to environmental stimuli. The degree to which lncRNAs are constitutively expressed may impact expression patterns and functions on the individual gene level rather than in genome-wide aggregate.


mBio ◽  
2018 ◽  
Vol 9 (5) ◽  
Author(s):  
Daniel Dar ◽  
Rotem Sorek

ABSTRACT Prokaryotic genomes encode a plethora of small noncoding RNAs (ncRNAs) that fine-tune the expression of specific genes. The vast majority of known bacterial ncRNAs are encoded from within intergenic regions, where their expression is controlled by promoter and terminator elements, similarly to protein-coding genes. In addition, recent studies have shown that functional ncRNAs can also be derived from gene 3′ untranslated regions (3′UTRs) via an alternative biogenesis pathway, in which the ncRNA segment is separated from the mRNA via RNase cleavage. Here, we report the detection of a large set of decay-generated noncoding RNAs (decRNAs), many of which are completely embedded within protein-coding mRNA regions rather than in the UTRs. We show that these decRNAs are “carved out” of the mRNA through the action of RNase E and that they are predicted to fold into highly stable RNA structures, similar to those of known ncRNAs. A subset of these decRNAs is predicted to interact with Hfq or ProQ or both, which act as ncRNA chaperones, and some decRNAs display evolutionarily conserved sequences and conserved expression patterns between different species. These results suggest that mRNA protein-coding regions may harbor a large set of potentially functional small RNAs. IMPORTANCE Bacteria and archaea utilize regulatory small noncoding RNAs (ncRNAs) to control the expression of specific genetic programs. These ncRNAs are almost exclusively encoded within intergenic regions and are independently transcribed. Here, we report on a large set ncRNAs that are “carved out” from within the protein-coding regions of Escherichia coli mRNAs by cellular RNases. These protected mRNA fragments fold into energetically stable RNA structures, reminiscent of those of intergenic regulatory ncRNAs. In addition, a subset of these ncRNAs coprecipitate with the major ncRNA chaperones Hfq and ProQ and display evolutionarily conserved sequences and conserved expression patterns between different bacterial species. Our data suggest that protein-coding genes can potentially act as a reservoir of regulatory ncRNAs.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 625
Author(s):  
Dongdong Bo ◽  
Xunping Jiang ◽  
Guiqiong Liu ◽  
Ruixue Hu ◽  
Yuqing Chong

Long intergenic non-coding RNAs (lincRNAs) regulate testicular development by acting on protein-coding genes. However, little is known about whether lincRNAs and protein-coding genes exhibit the same expression pattern in the same phase of postnatal testicular development in goats. Therefore, this study aimed to demonstrate the expression patterns and roles of lincRNAs during the postnatal development of the goat testis. Herein, the testes of Yiling goats with average ages of 0, 30, 60, 90, 120, 150, and 180 days postnatal (DP) were used for RNA-seq. In total, 20,269 lincRNAs were identified, including 16,931 novel lincRNAs. We identified seven time-specifically diverse lincRNA modules and six mRNA modules by weighted gene co-expression network analysis (WGCNA). Interestingly, the down-regulation of growth-related lincRNAs was nearly one month earlier than the up-regulation of spermatogenesis-related lincRNAs, while the down-regulation of growth-related protein-coding genes and the correspondent up-regulation of spermatogenesis-related protein-coding genes occurred at the same age. Then, potential lincRNA target genes were predicted. Moreover, the co-expression network of lincRNAs demonstrated that ENSCHIT00000000777, ENSCHIT00000002069, and ENSCHIT00000005076 were the key lincRNAs in the process of testis development. Our study discovered the divergent regulation patterns of lincRNA on spermatogenesis and testis growth, providing a fresh insight into age-biased changes in lincRNA expression in the goat testis.


2021 ◽  
Author(s):  
Étienne Fafard-Couture ◽  
Danny Bergeron ◽  
Sonia Couture ◽  
Sherif Abou Elela ◽  
Michelle S Scott

AbstractBackgroundSmall nucleolar RNAs (snoRNAs) are mid-size non-coding RNAs required for ribosomal RNA modification, implying a ubiquitous tissue distribution linked to ribosome synthesis. However, increasing numbers of studies identify extra-ribosomal roles of snoRNAs in modulating gene expression, suggesting more complex snoRNA expression patterns. Therefore, there is a great need for mapping the snoRNome in different human tissues as the blueprint for snoRNA functions.ResultsWe used a low structure bias RNA-Seq approach to accurately quantify snoRNAs and compare them to the entire transcriptome in seven healthy human tissues (breast, ovary, prostate, testis, skeletal muscle, liver and brain). We identified 475 expressed snoRNAs categorized in two abundance classes that differ significantly in their function, conservation level and correlation with their host gene: 390 snoRNAs are uniformly expressed and 85 are enriched in the brain or reproductive tissues. Most tissue-enriched snoRNAs are embedded in lncRNAs and display strong correlation of abundance with them, whereas uniformly expressed snoRNAs are mostly embedded in protein-coding host genes and are mainly non- or anticorrelated with them. 59% of the non-correlated or anticorrelated protein-coding host gene/snoRNA pairs feature dual-initiation promoters, as opposed to only 16% of the correlated non-coding host gene/snoRNA pairs.ConclusionsOur results demonstrate that snoRNAs are not a single homogeneous group of housekeeping genes but include highly regulated tissue-enriched RNAs. Indeed, our work indicates that the architecture of snoRNA host genes varies to uncouple the host and snoRNA expressions in order to meet the different snoRNA abundance levels and functional needs of human tissues.


Cells ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 412 ◽  
Author(s):  
Wei Liu ◽  
Zhiqiang Zhang ◽  
Wei Zhu ◽  
Zhongying Ren ◽  
Lin Jia ◽  
...  

Polyploidization is important for the speciation and subsequent evolution of many plant species. Analyses of the duplicated genes produced via polyploidization events may clarify the origin and evolution of gene families. During terpene biosynthesis, 3-hydroxy-3-methylglutaryl coenzyme A synthase (HMGS) functions as a key enzyme in the mevalonate pathway. In this study, we first identified a total of 53 HMGS genes in 23 land plant species, while no HMGS genes were detected in three green algae species. The phylogenetic analysis suggested that plant HMGS genes may have originated from a common ancestral gene before clustering in different branches during the divergence of plant lineages. Then, we detected six HMGS genes in the allotetraploid cotton species (Gossypium hirsutum), which was twice that of the two diploid cotton species (Gossypium raimondii and Gossypium arboreum). The comparison of gene structures and phylogenetic analysis of HMGS genes revealed conserved evolution during polyploidization in Gossypium. Moreover, the expression patterns indicated that six GhHMGS genes were expressed in all tested tissues, with most genes considerably expressed in the roots, and they were responsive to various phytohormone treatments and abiotic stresses. The sequence and expression divergence of duplicated genes in G. hirsutum implied the sub-functionalization of GhHMGS1A and GhHMGS1D as well as GhHMGS3A and GhHMGS3D, whereas it implied the pseudogenization of GhHMGS2A and GhHMGS2D. Collectively, our study unraveled the evolutionary history of HMGS genes in green plants and from diploid to allotetraploid in cotton and illustrated the different evolutionary fates of duplicated HMGS genes resulting from polyploidization.


2019 ◽  
Vol 21 (2) ◽  
pp. 637-648 ◽  
Author(s):  
Aritro Nath ◽  
Paul Geeleher ◽  
R Stephanie Huang

Abstract Long non-coding RNAs (lncRNAs) play an important role in gene regulation and are increasingly being recognized as crucial mediators of disease pathogenesis. However, the vast majority of published transcriptome datasets lack high-quality lncRNA profiles compared to protein-coding genes (PCGs). Here we propose a framework to harnesses the correlative expression patterns between lncRNA and PCGs to impute unknown lncRNA profiles. The lncRNA expression imputation (LEXI) framework enables characterization of lncRNA transcriptome of samples lacking any lncRNA data using only their PCG profiles. We compare various machine learning and missing value imputation algorithms to implement LEXI and demonstrate the feasibility of this approach to impute lncRNA transcriptome of normal and cancer tissues. Additionally, we determine the factors that influence imputation accuracy and provide guidelines for implementing this approach.


Genes ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 138 ◽  
Author(s):  
Junling Pang ◽  
Xia Zhang ◽  
Xuhui Ma ◽  
Jun Zhao

Long non-coding RNAs (lncRNAs) have emerged as important regulators in plant stress response. Here, we report a genome-wide lncRNA transcriptional analysis in response to drought stress using an expanded series of maize samples collected from three distinct tissues spanning four developmental stages. In total, 3488 high-confidence lncRNAs were identified, among which 1535 were characterized as drought responsive. By characterizing the genomic structure and expression pattern, we found that lncRNA structures were less complex than protein-coding genes, showing shorter transcripts and fewer exons. Moreover, drought-responsive lncRNAs exhibited higher tissue- and development-specificity than protein-coding genes. By exploring the temporal expression patterns of drought-responsive lncRNAs at different developmental stages, we discovered that the reproductive stage R1 was the most sensitive growth stage with more lncRNAs showing altered expression upon drought stress. Furthermore, lncRNA target prediction revealed 653 potential lncRNA-messenger RNA (mRNA) pairs, among which 124 pairs function in cis-acting mode and 529 in trans. Functional enrichment analysis showed that the targets were significantly enriched in molecular functions related to oxidoreductase activity, water binding, and electron carrier activity. Multiple promising targets of drought-responsive lncRNAs were discovered, including the V-ATPase encoding gene, vpp4. These findings extend our knowledge of lncRNAs as important regulators in maize drought response.


2022 ◽  
Author(s):  
Chaochen Huang ◽  
Pengbo Li ◽  
Junfeng Cao ◽  
Zishou Zheng ◽  
Jinquan Huang ◽  
...  

Abstract Background: The cryptochromes (CRY) comprise a specific blue light receptor for plants and animals, which play crucial roles in physiological processes of plant growth, development, and stress tolerance. Results: In the present work, a systematical analysis of CRY gene family from five allotetraploid cotton species, G. hirsutum, G. barbadense, G. tomentosum, G. mustelinum and G. darwinii together with seven diploid species. There were 18, 17, 17, 17, and 17 CRYs identified in G. hirsutum, G. barbadense, G. tomentosum, G. mustelinum and G. darwinii, respectively, whereas five to nine CRY genes were identified in the diploid species. Phylogenetic analysis of the protein-coding sequences revealed that CRY genes from the allotetraploids G. hirsutum and G. barbadense, three diploid cotton species (G. raimondii, G. herbaceum, and G. arboreum), and Arabidopsis thaliana could be classified into seven clades. Synteny analysis suggested that the homoeolog of G. hirsutum Gh_A02G0384 has undergone an evolutionary loss event in the other four allotetraploid cotton species. Cis-element analysis predicated the possible functions of CRY genes in G. hirsutum. Public RNA-seq data were investigated to analyze the expression patterns of G. hirsutum CRY genes in various tissues as well as gene expressions under abiotic stress treatments. Conclusion: These results indicated the possible functions of G. hirsutum CRY genes in differential tissues as well as in response to abiotic stress during the cotton plants life cycle.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Martin Bilbao-Arribas ◽  
Endika Varela-Martínez ◽  
Naiara Abendaño ◽  
Damián de Andrés ◽  
Lluís Luján ◽  
...  

Abstract Background Long non-coding RNAs (lncRNAs) are involved in several immune processes, including the immune response to vaccination, but most of them remain uncharacterised in livestock species. The mechanism of action of aluminium adjuvants as vaccine components is neither not fully understood. Results We built a transcriptome from sheep PBMCs RNA-seq data in order to identify unannotated lncRNAs and analysed their expression patterns along protein coding genes. We found 2284 novel lncRNAs and assessed their conservation in terms of sequence and synteny. Differential expression analysis performed between animals inoculated with commercial vaccines or aluminium adjuvant alone and the co-expression analysis revealed lncRNAs related to the immune response to vaccines and adjuvants. A group of co-expressed genes enriched in cytokine signalling and production highlighted the differences between different treatments. A number of differentially expressed lncRNAs were correlated with a divergently located protein-coding gene, such as the OSM cytokine. Other lncRNAs were predicted to act as sponges of miRNAs involved in immune response regulation. Conclusions This work enlarges the lncRNA catalogue in sheep and puts an accent on their involvement in the immune response to repetitive vaccination, providing a basis for further characterisation of the non-coding sheep transcriptome within different immune cells.


Author(s):  
Sanjana Pillay ◽  
Hazuki Takahashi ◽  
Piero Carninci ◽  
Aditi Kanhere

ABSTRACTLong non-coding RNAs or lncRNAs are a broad class of non-protein coding RNAs that are >200nucleotides in length. A number of lncRNAs are shown to play an important role in gene expression regulation. LncRNAs antisense to a protein-coding gene can act either as positive or negative regulators of overlapping protein-coding mRNAs. Almost 50% of lncRNAs present during development of vertebrates such as zebrafish are of antisense lncRNA class. However, their role in gene expression regulation during development remains enigmatic. To understand the role of antisense lncRNAs in early vertebrate development, we took a computational biology approach to analyze existing as well as novel dataset. Our analysis of RNA sequencing data from zebrafish development indicates that antisense RNAs can be divided into two major classes based on their positive or negative co-expression patterns to the sense protein-coding genes. The ones with negative co-expression patterns or group-1 are maternal antisense lncRNAs that overlap mainly developmental genes. Group-2 with positive expression pattern overlap mainly house-keeping genes. Group-1 antisense lncRNAs are longer and more stable as compared to antisense lncRNAs in group-2. In addition, to answer if antisense RNAs in the two groups are differently localized in cell compartments, we deep-sequenced RNA from cytoplasmic and nuclear compartments during early developmental stages. The analysis of these compartment specific datasets revealed group-1 lncRNAs are cytosolic. Based on the cytosolic nature of group-1 RNAs and their higher complementarity to the overlapping developmental mRNAs, we speculate that the group-1 RNAs might function similar to microRNAs in silencing spurious expression of developmental genes. Group-1 and group-2 RNAs are also distinct in terms of their genomic configuration, conservation, length and transcriptional regulation. These results are not only important in understanding the role of antisense RNAs in development but also for predicting the nature of association between antisense lncRNA and overlapping protein-coding genes.


Sign in / Sign up

Export Citation Format

Share Document