scholarly journals Cellular heterogeneity of circulating CD4+CD8+ double-positive T cells characterized by single-cell RNA sequencing

Author(s):  
Sung Min Choi ◽  
Hi Jung Park ◽  
Eun A Choi ◽  
Kyeong Cheon Jung ◽  
Jae Il Lee

Abstract Circulating CD4+CD8+ double-positive (DP) T cells are associated with a variety of disease states. However, unlike conventional T cells, the composition of this population is poorly understood. Here, we used single-cell RNA sequencing (scRNA-seq) to analyze the composition and characteristics of the DP T cell population circulating in the peripheral blood of cynomolgus monkeys. We found that circulating DP T cells not only contain a large number of naïve cells, but also comprise a heterogeneous population (Th1-, Th2-, Th17-, Tfh-, Treg-, Eomes+ Tr1-, CD4 CTL-, CD8 CTL-, and innate-like cells) with multiple potential functions. Flow cytometry analysis revealed that a substantial number of the naïve DP T cells expressed CD8αβ, as well as CD8αα, along with high expression of CD31. Moreover, the CD4hiCD8lo and CD4hiCD8hi populations, which express high levels of the CD4 coreceptor, comprised subsets characterized by helper and regulatory functions, some of which also exhibited cytotoxic functions. By contrast, the CD4loCD8hi population with high CD8 coreceptor expression comprised a subset characterized by CD8 CTL- and innate-like properties. Taken together, the data show that scRNA-seq analysis identified a more diverse subset of the circulating DP cells than is currently known, despite this population being very small.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sung Min Choi ◽  
Hi Jung Park ◽  
Eun A. Choi ◽  
Kyeong Cheon Jung ◽  
Jae Il Lee

AbstractCirculating CD4+CD8+ double-positive (DP) T cells are associated with a variety of disease states. However, unlike conventional T cells, the composition of this population is poorly understood. Here, we used single-cell RNA sequencing (scRNA-seq) to analyze the composition and characteristics of the DP T cell population circulating in the peripheral blood of cynomolgus monkeys. We found that circulating DP T cells not only contain a large number of naïve cells, but also comprise a heterogeneous population (CD4 CTL-, Eomes+ Tr1-, Th2-, Th17-, Tfh-, Treg-, CD8 CTL-, and innate-like cells) with multiple potential functions. Flow cytometry analysis revealed that a substantial number of the naïve DP T cells expressed CD8αβ, as well as CD8αα, along with high expression of CD31. Moreover, the CD4hiCD8lo and CD4hiCD8hi populations, which express high levels of the CD4 coreceptor, comprised subsets characterized by helper and regulatory functions, some of which also exhibited cytotoxic functions. By contrast, the CD4loCD8hi population with high CD8 coreceptor expression comprised a subset characterized by CD8 CTL- and innate-like properties. Taken together, the data show that scRNA-seq analysis identified a more diverse subset of the circulating DP cells than is currently known, despite this population being very small.


Author(s):  
Ka Zhang ◽  
Hao Kan ◽  
Aiqin Mao ◽  
Li Geng ◽  
Xin Ma

AbstractElevated blood pressure caused by excessive salt intake is common and associated with cardiovascular diseases in most countries. However, the composition and responses of vascular cells in the progression of hypertension have not been systematically described. We performed single-cell RNA sequencing on the aortic arch from C57BL/6J mice fed a chow/high-salt diet. We identified 19 distinct cell populations representing 12 lineages, including smooth muscle cells (SMCs), fibroblasts, endothelial cells (ECs), B cells, and T cells. During the progression of hypertension, the proportion of three SMC subpopulations, two EC subpopulations, and T cells increased. In two EC clusters, the expression of reactive oxygen species-related enzymes, collagen and contractility genes was upregulated. Gene set enrichment analysis showed that three SMC subsets underwent endothelial-to-mesenchymal transition. We also constructed intercellular networks and found more frequent cell communication among aortic cells in hypertension and that some signaling pathways were activated during hypertension. Finally, joint public genome-wide association study data and our single-cell RNA-sequencing data showed the expression of hypertension susceptibility genes in ECs, SMCs, and fibroblasts and revealed 21 genes involved in the initiation and development of high-salt-induced hypertension. In conclusion, our data illustrate the transcriptional landscape of vascular cells in the aorta associated with hypertension and reveal dramatic changes in cell composition and intercellular communication during the progression of hypertension.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
David S. Fischer ◽  
Meshal Ansari ◽  
Karolin I. Wagner ◽  
Sebastian Jarosch ◽  
Yiqi Huang ◽  
...  

AbstractThe in vivo phenotypic profile of T cells reactive to severe acute respiratory syndrome (SARS)-CoV-2 antigens remains poorly understood. Conventional methods to detect antigen-reactive T cells require in vitro antigenic re-stimulation or highly individualized peptide-human leukocyte antigen (pHLA) multimers. Here, we use single-cell RNA sequencing to identify and profile SARS-CoV-2-reactive T cells from Coronavirus Disease 2019 (COVID-19) patients. To do so, we induce transcriptional shifts by antigenic stimulation in vitro and take advantage of natural T cell receptor (TCR) sequences of clonally expanded T cells as barcodes for ‘reverse phenotyping’. This allows identification of SARS-CoV-2-reactive TCRs and reveals phenotypic effects introduced by antigen-specific stimulation. We characterize transcriptional signatures of currently and previously activated SARS-CoV-2-reactive T cells, and show correspondence with phenotypes of T cells from the respiratory tract of patients with severe disease in the presence or absence of virus in independent cohorts. Reverse phenotyping is a powerful tool to provide an integrated insight into cellular states of SARS-CoV-2-reactive T cells across tissues and activation states.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Sunny Z. Wu ◽  
Daniel L. Roden ◽  
Ghamdan Al-Eryani ◽  
Nenad Bartonicek ◽  
Kate Harvey ◽  
...  

Abstract Background High throughput single-cell RNA sequencing (scRNA-Seq) has emerged as a powerful tool for exploring cellular heterogeneity among complex human cancers. scRNA-Seq studies using fresh human surgical tissue are logistically difficult, preclude histopathological triage of samples, and limit the ability to perform batch processing. This hindrance can often introduce technical biases when integrating patient datasets and increase experimental costs. Although tissue preservation methods have been previously explored to address such issues, it is yet to be examined on complex human tissues, such as solid cancers and on high throughput scRNA-Seq platforms. Methods Using the Chromium 10X platform, we sequenced a total of ~ 120,000 cells from fresh and cryopreserved replicates across three primary breast cancers, two primary prostate cancers and a cutaneous melanoma. We performed detailed analyses between cells from each condition to assess the effects of cryopreservation on cellular heterogeneity, cell quality, clustering and the identification of gene ontologies. In addition, we performed single-cell immunophenotyping using CITE-Seq on a single breast cancer sample cryopreserved as solid tissue fragments. Results Tumour heterogeneity identified from fresh tissues was largely conserved in cryopreserved replicates. We show that sequencing of single cells prepared from cryopreserved tissue fragments or from cryopreserved cell suspensions is comparable to sequenced cells prepared from fresh tissue, with cryopreserved cell suspensions displaying higher correlations with fresh tissue in gene expression. We showed that cryopreservation had minimal impacts on the results of downstream analyses such as biological pathway enrichment. For some tumours, cryopreservation modestly increased cell stress signatures compared to freshly analysed tissue. Further, we demonstrate the advantage of cryopreserving whole-cells for detecting cell-surface proteins using CITE-Seq, which is impossible using other preservation methods such as single nuclei-sequencing. Conclusions We show that the viable cryopreservation of human cancers provides high-quality single-cells for multi-omics analysis. Our study guides new experimental designs for tissue biobanking for future clinical single-cell RNA sequencing studies.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii406-iii406
Author(s):  
Andrew Donson ◽  
Kent Riemondy ◽  
Sujatha Venkataraman ◽  
Ahmed Gilani ◽  
Bridget Sanford ◽  
...  

Abstract We explored cellular heterogeneity in medulloblastoma using single-cell RNA sequencing (scRNAseq), immunohistochemistry and deconvolution of bulk transcriptomic data. Over 45,000 cells from 31 patients from all main subgroups of medulloblastoma (2 WNT, 10 SHH, 9 GP3, 11 GP4 and 1 GP3/4) were clustered using Harmony alignment to identify conserved subpopulations. Each subgroup contained subpopulations exhibiting mitotic, undifferentiated and neuronal differentiated transcript profiles, corroborating other recent medulloblastoma scRNAseq studies. The magnitude of our present study builds on the findings of existing studies, providing further characterization of conserved neoplastic subpopulations, including identification of a photoreceptor-differentiated subpopulation that was predominantly, but not exclusively, found in GP3 medulloblastoma. Deconvolution of MAGIC transcriptomic cohort data showed that neoplastic subpopulations are associated with major and minor subgroup subdivisions, for example, photoreceptor subpopulation cells are more abundant in GP3-alpha. In both GP3 and GP4, higher proportions of undifferentiated subpopulations is associated with shorter survival and conversely, differentiated subpopulation is associated with longer survival. This scRNAseq dataset also afforded unique insights into the immune landscape of medulloblastoma, and revealed an M2-polarized myeloid subpopulation that was restricted to SHH medulloblastoma. Additionally, we performed scRNAseq on 16,000 cells from genetically engineered mouse (GEM) models of GP3 and SHH medulloblastoma. These models showed a level of fidelity with corresponding human subgroup-specific neoplastic and immune subpopulations. Collectively, our findings advance our understanding of the neoplastic and immune landscape of the main medulloblastoma subgroups in both humans and GEM models.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dandan Cao ◽  
Rachel W. S. Chan ◽  
Ernest H. Y. Ng ◽  
Kristina Gemzell-Danielsson ◽  
William S. B. Yeung

Abstract Background Endometrial mesenchymal-like stromal/stem cells (eMSCs) have been proposed as adult stem cells contributing to endometrial regeneration. One set of perivascular markers (CD140b&CD146) has been widely used to enrich eMSCs. Although eMSCs are easily accessible for regenerative medicine and have long been studied, their cellular heterogeneity, relationship to primary counterpart, remains largely unclear. Methods In this study, we applied 10X genomics single-cell RNA sequencing (scRNA-seq) to cultured human CD140b+CD146+ endometrial perivascular cells (ePCs) from menstrual and secretory endometrium. We also analyzed publicly available scRNA-seq data of primary endometrium and performed transcriptome comparison between cultured ePCs and primary ePCs at single-cell level. Results Transcriptomic expression-based clustering revealed limited heterogeneity within cultured menstrual and secretory ePCs. A main subpopulation and a small stress-induced subpopulation were identified in secretory and menstrual ePCs. Cell identity analysis demonstrated the similar cellular composition in secretory and menstrual ePCs. Marker gene expression analysis showed that the main subpopulations identified from cultured secretory and menstrual ePCs simultaneously expressed genes marking mesenchymal stem cell (MSC), perivascular cell, smooth muscle cell, and stromal fibroblast. GO enrichment analysis revealed that genes upregulated in the main subpopulation enriched in actin filament organization, cellular division, etc., while genes upregulated in the small subpopulation enriched in extracellular matrix disassembly, stress response, etc. By comparing subpopulations of cultured ePCs to the publicly available primary endometrial cells, it was found that the main subpopulation identified from cultured ePCs was culture-unique which was unlike primary ePCs or primary endometrial stromal fibroblast cells. Conclusion In summary, these data for the first time provides a single-cell atlas of the cultured human CD140b+CD146+ ePCs. The identification of culture-unique relatively homogenous cell population of CD140b+CD146+ ePCs underscores the importance of in vivo microenvironment in maintaining cellular identity.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A947-A947
Author(s):  
Diana Graves ◽  
Aleksandar Obradovic ◽  
Michael Korrer ◽  
Yu Wang ◽  
Sohini Roy ◽  
...  

BackgroundUse of anti-PD-1 immune checkpoint inhibitors (ICI) is currently the first line therapy for recurrent/metastatic head and neck squamous cell carcinoma (HNSCC), but critical work remains in identifying factors guiding resistance mechanisms.1 2 While recent studies have specifically implicated cancer-associated fibroblasts (CAFs) as potential mediators of immunotherapy response, the immunoregulatory role of CAFs in head and neck cancer has not been thoroughly explored.3–5MethodsTo determine if there are changes in cell populations associated with anti-PD-1 therapy in head and neck cancer patients, we performed high dimensional single-cell RNA sequencing (scRNA-SEQ) from a neoadjuvant trial of 50 advanced-stage head and neck squamous cell carcinoma (HNSCC) patients that were treated with the anti-PD-1 therapy, nivolumab, for the duration of one month. Tumor specimens were analyzed pre- and post-treatment with single-cell RNA sequencing performed on 4 patients as well as bulk RNA sequencing on 40 patients. Matched scRNA-SEQ data was analyzed using the Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNe) and Virtual Inference of Protein-activity by Enriched Regulon (VIPER) bioinformatic analysis platform to determine TME cells that correlated with response and resistance to nivolumab.6 For CAF functional studies, surgical tumor specimens were processed and enriched for CAF subtypes, and these were co-cultured with T cells from peripheral blood and tumor infiltrating lymphocytes.ResultsWe identified 14 distinct cell types present in HNSCC patients. Of these 14 cell types, the fibroblast subtype showed significant changes in abundance following nivolumab treatment. We identified 5 distinct clusters of cancer-associated fibroblast subsets (HNCAF-0, 1, 2, 3, and 4) of which, two clusters, HNCAF-0 and HNCAF-3 were predictive of patient response to anti-PD-1 therapy. To determine the significance of these CAF subsets’ function, we isolated HNCAF-0/3 cells from primary HNSCC tumor specimens and co-cultured with primary human T cells. Analysis by flow cytometry showed that HNCAF-0/3 reduced TGFβ-dependent PD-1+TIM-3+ exhaustion of T cells and increased CD103+NKG2A+ resident memory phenotype and cytotoxicity to enhance overall function.ConclusionsTo our knowledge, we are the first to characterize CAF heterogeneity within the head and neck TME and show direct immunostimulatory activity of CAFs. Our findings demonstrate the functional importance of CAF subsets in modulating the immunoregulatory milieu of the human HNSCC, and we have identified clinically actionable CAF subtypes that can be used as a biomarker of response and resistance in future clinical trials.Trial RegistrationNCT03238365ReferencesFerris RL, Blumenschein Jr G, Fayette J, Guigay J, Colevas AD, Licitra L, Harrington K, Kasper S, Vokes EE, Even C, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med 2016;375:1856–1867.Seiwert TY, Burtness B, Mehra R, Weiss J, Berger R, Eder JP, Heath K, McClanahan T, Lunceford J, Gause C, et al. Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial. Lancet Oncol 2016;17:956–965.Dominguez CX, Muller S, Keerthivasan S, Koeppen H, Hung J, Gierke S, Breart B, Foreman O, Bainbridge TW, Castiglioni A, et al. Single-cell RNA sequencing reveals stromal evolution into LRRC15(+) myofibroblasts as a determinant of patient response to cancer immunotherapy. Cancer Discov 2020;10:232–253.Feig C, Jones JO, Kraman M, Wells RJ, Deonarine A, Chan DS, Connell CM, Roberts EW, Zhao Q, Caballero OL, et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc Natl Acad Sci U S A 2013;110:20212–20217.Kieffer Y, Hocine HR, Gentric G, Pelon F, Bernard C, Bourachot B, Lameiras S, Albergante L, Bonneau C, Guyard A, et al. Single-cell analysis reveals fibroblast clusters linked to immunotherapy resistance in cancer. Cancer Discov 2020;10:1330–1351.Obradovic A, Chowdhury N, Haake SM, Ager C, Wang V, Vlahos L, Guo XV, Aggen DH, Rathmell WK, Jonasch E, et al. Single-cell protein activity analysis identifies recurrence-associated renal tumor macrophages. Cell 2021;184:2988–3005.Ethics ApprovalPatients provided informed consent for this work. All experimental procedures were approved by the Institutional Review Board of Vanderbilt University Medical Center (IRB: 171883).


2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Zihao Mi ◽  
Zhenzhen Wang ◽  
Xiaotong Xue ◽  
Tingting Liu ◽  
Chuan Wang ◽  
...  

AbstractLepromatous leprosy (L-LEP), caused by the massive proliferation of Mycobacterium leprae primarily in macrophages, is an ideal disease model for investigating the molecular mechanism of intracellular bacteria evading or modulating host immune response. Here, we performed single-cell RNA sequencing of both skin biopsies and peripheral blood mononuclear cells (PBMCs) of L-LEP patients and healthy controls. In L-LEP lesions, we revealed remarkable upregulation of APOE expression that showed a negative correlation with the major histocompatibility complex II gene HLA-DQB2 and MIF, which encodes a pro-inflammatory and anti-microbial cytokine, in the subset of macrophages exhibiting a high expression level of LIPA. The exhaustion of CD8+ T cells featured by the high expression of TIGIT and LAG3 in L-LEP lesions was demonstrated. Moreover, remarkable enhancement of inhibitory immune receptors mediated crosstalk between skin immune cells was observed in L-LEP lesions. For PBMCs, a high expression level of APOE in the HLA-DRhighFBP1high monocyte subset and the expansion of regulatory T cells were found to be associated with L-LEP. These findings revealed the primary suppressive landscape in the L-LEP patients, providing potential targets for the intervention of intracellular bacteria caused persistent infections.


2021 ◽  
Vol 8 (11) ◽  
pp. 166
Author(s):  
Dimitrios Kouroupis ◽  
Thomas M. Best ◽  
Lee D. Kaplan ◽  
Diego Correa ◽  
Anthony J. Griswold

The pathogenesis and progression of knee inflammatory pathologies is modulated partly by residing macrophages in the infrapatellar fat pad (IFP), thus, macrophage polarization towards pro-inflammatory (M1) or anti-inflammatory (M2) phenotypes is important in joint disease pathologies. Alteration of M1/M2 balance contributes to the initiation and progression of joint inflammation and can be potentially altered with mesenchymal stem cell (MSC) therapy. In an acute synovial/IFP inflammation rat model a single intra-articular injection of IFP-MSC was performed, having as controls (1) diseased rats not receiving IFP-MSC and (2) non-diseased rats. After 4 days, cell specific transcriptional profiling via single-cell RNA-sequencing was performed on isolated IFP tissue from each group. Eight transcriptomically distinct cell populations were identified within the IFP across all three treatment groups with a noted difference in the proportion of myeloid cells across the groups. Largely myeloid cells consisted of macrophages (>90%); one M1 sub-cluster highly expressing pro-inflammatory markers and two M2 sub-clusters with one of them expressing higher levels of canonical M2 markers. Notably, the diseased samples (11.9%) had the lowest proportion of cells expressing M2 markers relative to healthy (14.8%) and MSC treated (19.4%) samples. These results suggest a phenotypic polarization of IFP macrophages towards the pro-inflammatory M1 phenotype in an acute model of inflammation, which are alleviated by IFP-MSC therapy inducing a switch towards an alternate M2 status. Understanding the IFP cellular heterogeneity and associated transcriptional programs may offer insights into novel therapeutic strategies for disabling joint disease pathologies.


Sign in / Sign up

Export Citation Format

Share Document