scholarly journals Climatic Rather than Edaphic Variables Determine Leaf C, N, P Stoichiometry of Deciduous Quercus Species

Author(s):  
Yutong Lin ◽  
Yuan Lai ◽  
Songbo Tang ◽  
Zhangfen Qin ◽  
Jianfeng Liu ◽  
...  

Abstract Purpose Leaf elemental stoichiometry is indicative of plant nutrient limitation, community composition, ecosystem function. Understanding the variations of leaf carbon (C), nitrogen (N), and phosphorus (P) stoichiometry at genus-level across large geographic regions and identifying their driving factors are important to predict species’ distribution range shifts affected by climate change.MethodsHere, we determined the patterns of leaf concentrations ([ ]) and ratios ( / ) of C, N, P of five deciduous oaks species (Quercus) across China covering ~ 20 latitude (~21–41˚ N) and longitude (~99–119˚ E) degrees, and detected their relationships with climatic, edaphic variables. ResultsLeaf [C], [N] and N/P, C/P significantly increased, while leaf [P] and C/N decreased with the increasing latitude. Leaf stoichiometry except for leaf [C] had no significant trends along the longitude. Climatic variables, i.e. mean annual temperature, mean annual precipitation, the maximum temperature of the warmest month, temperature seasonality, aridity index, and the potential evapo-transpiration were the determinants of the geographic patterns of leaf C, N, P stoichiometry. The mean annual precipitation and the maximum temperature of the warmest month indirectly regulated leaf C/N, C/P and N/P via altering leaf [P]. Edaphic variables had non-significant effects on leaf C, N, and P stoichiometry at the broad geographic range.ConclusionsClimatic variables have more important effects than edaphic properties on leaf C, N, P stoichiometry of the studied deciduous Quercus species, which imply the ongoing climate change will alter nutrient strategies and potentially shift the distribution range of this eurytopic species.

2021 ◽  
Author(s):  
Yutong Lin ◽  
Yuan Lai ◽  
Songbo Tang ◽  
Zhangfen Qin ◽  
Jianfeng Liu ◽  
...  

Abstract Purpose Leaf stoichiometry of carbon (C), nitrogen (N) and phosphorus (P) is indicative of plant nutrient limitation, community composition, ecosystem function. Understanding leaf stoichiometry patterns of C, N, P of eurytopic species at genus-level across large-scale geographic regions and identifying their driven factors are of great importance to assess and to predict species’ distribution range shifts affected by climate change. Methods Here, we determined the patterns of leaf C, N, P stoichiometry of five deciduous oaks species (Quercus) across China covering ~ 20 latitude (~ 21–41˚ N) and longitude (~ 99–119˚ E) degrees, and detected their relationships with climatic, edaphic variables. Results We found that the concentrations ([ ]) of leaf C, N and the ratios ( / ) of N: P, C: P significantly increased, while leaf [P] and C/N decreased with the increasing latitude. However, leaf stoichiometry had no significant trends along the longitudinal gradient with an exception of leaf [C] which decreased with increasing longitude. The climatic variables, i.e. mean annual temperature precipitation (MAP), the max temperature of the warmest month (Tmax), temperature seasonality (TS), aridity index (AI) were the determinants on the geographic patterns of leaf C, N, P stoichiometry. The studied deciduous Quercus species growing in warm and wet environments tended to increase leaf [C], [N], C/P, and N/P, but to decrease leaf [P] and C/N, which maybe their nutritional strategies to improve adaptability. Conclusion The adaptative mechanisms of leaf stoichiometry should be further studied to assess the fate of deciduous Quercus species affected by climate change.


2016 ◽  
Vol 64 (5) ◽  
pp. 353 ◽  
Author(s):  
L. R. G. DeSantis ◽  
C. Hedberg

Australia has undergone significant climate change, both today and in the past. Koalas, due to their restricted diet of predominantly eucalyptus leaves and limited drinking behaviour may serve as model organisms for assessing past climate change via stable isotopes of tooth enamel. Here, we assess whether stable carbon and oxygen isotopes from tooth enamel record known climate variables, including proxies of relative aridity (e.g. mean annual precipitation, mean annual maximum temperature, and relative humidity). The results demonstrate significant negative relationships between oxygen isotope values and both relative humidity and mean annual precipitation, proxies for relative aridity. The best model for predicting enamel oxygen isotope values incorporates mean annual precipitation and modelled oxygen isotope values of local precipitation. These data and the absence of any relationship between modelled oxygen isotope precipitation values, independently, suggest that koalas do not track local precipitation values but instead record relative aridity. The lack of significant relationships between carbon isotopes and climate variables suggests that koalas may instead be tracking the density of forests and/or their location in the canopy. Collectively, these data suggest that koalas are model organisms for assessing relative aridity over time – much like kangaroos.


2021 ◽  
Author(s):  
Ayalew Assefa ◽  
Abebe Tibebu ◽  
Amare Bihon ◽  
Alemu Dagnachew ◽  
Yimer Muktar

Abstract African horse sickness is a vector-borne, non-contagious and highly infectious disease of equines caused by African Horse Sickness viruses (AHSv) that mainly affect horses. The occurrence of the disease causes huge economic impacts because of its fatality rate is high, trade ban and disease control costs. In planning of vectors and vector borne diseases, the application of Ecological niche models (ENM) used an enormous contribution in exactly delineating the suitable habitats of the vector. We developed an ENM with the objective of delineating the global suitability of AHSv outbreaks retrospective based on data records from 2005–2019. The model was developed in R software program using Biomod2 package with an Ensemble modeling technique. Predictive environmental variables like mean diurnal range, mean precipitation of driest month(mm), precipitation seasonality (cv), mean annual maximum temperature (oc), mean annual minimum temperature (oc) mean precipitation of warmest quarter(mm), mean precipitation of coldest quarter (mm) mean annual precipitation (mm), solar radiation (kj /day), elevation/altitude (m), wind speed (m/s) were used to develop the model. From these variables, solar radiation, mean maximum temperature, average annual precipitation, altitude and precipitation seasonality contributed 36.83%, 17.1%, 14.34%, 7.61%, and 6.4%, respectively. The model depicted the sub-Sahara African continent as the most suitable area for the virus. Mainly Senegal, Burkina Faso, Niger, Nigeria, Ethiopia, Sudan, Somalia, South Africa, Zimbabwe, Madagascar and Malawi are African countries identified as highly suitable countries for the virus. Besides, OIE-listed disease-free countries like India, Australia, Brazil, Paraguay and Bolivia have been found suitable for the virusThis model can be used as an epidemiological tool in planning control and surveillance of diseases nationally or internationally.


2020 ◽  
Vol 4 (1) ◽  
pp. 15-22
Author(s):  
Muhammad Taqui ◽  
Jabir Hussain Syed ◽  
Ghulam Hassan Askari

Pakistan’s largest city, Karachi, which is industrial centre and economic hub needs focus in research and development of every field of Engineering, Science and Technology. Urbanization and industrialization is resulting bad weather conditions which prolongs until a climate change. Since, Meteorology serves as interdisciplinary field of study, an analytical study of real and region-specific meteorological data is conducted which focuses on routine, extreme and engineering meteorology of metropolitan city Karachi. Results of study endorse the meteorological parameters relationship and establish the variability of those parameters for Karachi Coastal Area. The rise of temperature, decreasing trend of atmospheric pressure, increment in precipitation and fall in relative humidity depict the effects of urbanization and industrialization. The recorded extreme maximum temperature of 45.50C (on June 11, 1988) and the extreme minimum temperature of 4.5 0C(on January 1, 2007) is observed at Karachi south meteorological station. The estimated temperature rise in 32 years is 0.9 0C, which is crossing the Intergovernmental Panel on Climate Change (IPCC) predicted/estimated limit of 2oC rise per century. The maximum annual precipitation of 487.0mm appearing in 1994 and the minimum annual precipitation of 2.5mm appearing in 1987 is observed at same station which is representative meteorological station for Karachi Coast. Further Engineering meteorological parameters for heating ventilation air condition (HVAC) system design for industrial purpose are deduced as supporting data for coastal area site study for industrial as well as any follow-up engineering work in the specified region.


Author(s):  
Femi S. Omotayo ◽  
Philip G. Oguntunde ◽  
Ayorinde A. Olufayo

This study was carried to determine the trend of cocoa yield and climatic variables and assessment of the impact of climate change on the future yield of cocoa in Ondo State, Nigeria. Annual trend statistics for cocoa yield and climatic variables were analyzed for the state using Mann-Kendall test for trend and Sen’s slope estimates. Downscaled data from six Global Circulation Models (GCMs) were used to examine the impact of climate change on the future yield of cocoa in the study area. The results of trends analysis in Ondo State showed that yield decreased monotonically at the rate of 492.18 tonnes/yr (P<0.05). An increased significant trend was established in annual rainfall trend. While Maximum temperature, minimum temperature, and mean temperature all increased at the rate of 0.02/yr (P<0.001). The ensemble of all the GCMs projected a mid-term future decrease of about 9,334 tonnes/yr by 2050 and a long-term future decrease of 13,504 tonnes/yr of cocoa by 2100. The economic implication of these is that, if the projected change in the yield of cocoa as predicted by the ensemble of all the GCMs should hold for the future, it means that Ondo state may experience a loss of about $22,470,018.22 and $32,308,584.32 by the year 2050 and 2100 respectively according to the present price of the commodity in the world market. Measures are to be taken by the government and farmers to find a way of mitigating the impacts of climate change on the future yield of the cocoa study area. This research should be extended to other cocoa producing areas in Nigeria.


Hydrology ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 3
Author(s):  
Nega Chalie Emiru ◽  
John Walker Recha ◽  
Julian R. Thompson ◽  
Abrham Belay ◽  
Ermias Aynekulu ◽  
...  

This study investigated the impacts of climate change on the hydrology of the Upper Awash Basin, Ethiopia. A soil and water assessment tool (SWAT) model was calibrated and validated against observed streamflow using SWAT CUP. The Mann–Kendall trend test (MK) was used to assess climate trends. Meteorological drought (SPEI) and hydrological drought (SDI) were also investigated. Based on the ensemble mean of five global climate models (GCMs), projected increases in mean annual maximum temperature over the period 2015–2100 (compared with a 1983–2014 baseline) range from 1.16 to 1.73 °C, while increases in minimum temperature range between 0.79 and 2.53 °C. Increases in mean annual precipitation range from 1.8% at Addis Ababa to 45.5% over the Hombole area. High streamflow (Q5) declines at all stations except Ginchi. Low flows (Q90) also decline with Q90 equaling 0 m3s−1 (i.e., 100% reduction) at some gauging stations (Akaki and Hombole) for individual GCMs. The SPEI confirmed a significant drought trend in the past, while the frequency and severity of drought will increase in the future. The basin experienced conditions that varied from modest dry periods to a very severe hydrological drought between 1986 and 2005. The projected SDI ranges from modestly dry to modestly wet conditions. Climate change in the basin would enhance seasonal variations in hydrological conditions. Both precipitation and streamflow will decline in the wet seasons and increase in the dry seasons. These changes are likely to have an impact on agricultural activities and other human demands for water resources throughout the basin and will require the implementation of appropriate mitigation measures.


Author(s):  
В.А. Усольцев ◽  
И.С. Цепордей ◽  
А.А. Осмирко ◽  
В.Ф. Ковязин ◽  
В.П. Часовских ◽  
...  

Биомасса лесов является ключевой экосистемной составляющей и важным компонентом глобального углеродного цикла. Разработка моделей биомассы, чувствительных к изменению климата, ведется сегодня на уровнях как древостоев, так и модельных деревьев. Однако все текущие исследования подобного рода выполняются в пределах ограниченных экорегионов. Сформированная авторами база данных о биомассе насаждений подрода Pinus L., произрастающего в Евразии, в количестве 2460 пробных площадей использована в качестве основы для выявления трансконтинентальных закономерностей. Предпринята первая попытка разработать гармонизированную по структуре биомассы модель аддитивной по фракционному составу биомассы насаждений двухвойных сосен, изменяющейся по трансевразийским гидротермическим градиентам, а именно, по среднегодовым осадкам и средней январской температуре воздуха. Гармонизация обеспечена аддитивностью фракционного состава, когда суммарная биомасса стволов, ветвей, хвои и корней, полученная по «фракционным» уравнениям, равняется значению биомассы, полученной по общему уравнению. Показано, что в холодных климатических поясах увеличение осадков приводит к снижению биомассы большинства фракций, а в теплых – к ее увеличению. Соответственно во влагообеспеченных районах повышение температуры вызывает увеличение биомассы, а в засушливых – ее снижение. Геометрическая интерпретация полученной модели представлена «пропеллеро-образной» поверхностью, что согласуется с аналогичными закономерностями, ранее установленными в России на локальном и региональном уровнях. Предложенная модель аддитивной структуры биомассы сосновых древостоев дает возможность прогнозировать изменение структуры биомассы, связанное с одновременным повышением или понижением температуры января и годичных осадков. Forest biomass is a key ecosystem part and an important component of the global carbon cycle. Modelling of biomass, sensitive to climate change, is fulfiled up-to-date at levels as forest stands and sample trees. However, all current studies of this matter are carried out within limited ecoregions. The database on forest biomass of the subgenus Pinus L. in Eurasia in a number of 2460 sample plots compiled by the authors is the basis for revealing transcontinental regularities. The first attempt is made to develop a biomass structure model harmonized by means of additive component composition algorithm describing biomass change in trans-Eurasian hydrothermal gradients, namely, mean annual precipitation and mean January air temperature. Additivity of biomass component composition means that the total of biomass components (stems, branches, foliage, roots) derived from component equations is equal to the result obtained using the common biomass equation. It is stated that in cold climatic zones any increase in precipitation leads to corresponding decrease in the biomass values, but in warm zones – to its increase. In wet areas, the rise in temperature causes an increase of biomass values, but in arid areas – their reductions. Geometric view of this model represented by a «propeller-shaped» surface is consistent with the results, formerly revealed by the other authors in Russia on local and regional levels. The proposed transcontinental model of additive structure of forest biomass gives a possibility to predict the change of biomass structure in relation to simultaneous increase or decrease of January temperature and annual precipitation. The development of such models for basic forest-forming species grown in Eurasia enables to forecast any changes in the biological productivity of forest cover of Eurasia in relation to climate change.


Author(s):  
Emmanuel Nyadzi ◽  
Enoch Bessah ◽  
Gordana Kranjac-Berisavljevic ◽  
Fulco Ludwig

AbstractThe Nasia catchment is the reservoir with significant surface water resources in Northern Ghana and home to numerous subsistence farmers engaged in rainfed and dry season irrigation farming. Yet, there is little understanding of the hydro-climatic and land use/cover conditions of this basin. This study investigated trends, relationships and changes in hydro-climatic variables and land use/cover in addition to implications of the observable changes in the Nasia catchment over a period of 50 years. Parameters used for the study were minimum (Tmin) and maximum temperature (Tmax), wind speed (WS), sunshine duration (S), rainfall (R), relative humidity (RH), discharge (D) and potential evapotranspiration (PET) data, 15 years of remotely sensed normalized difference vegetation index (NDVI) data and 30 years of land use/cover image data. Results show that Tmin, Tmax, WS and PET have increased significantly (p < 0.05) over time. RH and S significantly declined. R, D and NDVI have not decreased significantly (p > 0.05). A significant abrupt change in almost all hydro-climatic variables started in the 1980s, a period that coincides with the occurrence of drought events in the region, except WS in 2001, R in 1968 and D in 1975, respectively. Also, D showed a positive significant correlation with RH, R and PET, but an insignificant positive relationship with S. D also showed a negative insignificant correlation with Tmin, Tmax and WS. Areas covered with shrubland and settlement/bare lands have increased to the disadvantage of cropland, forest, grassland and water bodies. It was concluded that climate change impact is quite noticeable in the basin, indicating water scarcity and possibilities of droughts. The analysis performed herein is a vital foundation for further studies to simulate and predict the effect of climate change on the water resources, agriculture and livelihoods in the Nasia catchment.


2016 ◽  
Author(s):  
Dagnenet Fenta Mekonnen ◽  
Markus Disse

Abstract. Climate change is becoming one of the most arguable and threatening issues in terms of global context and their responses to environment and socio/economic drivers. Its direct impact becomes critical for water resource development and indirectly for agricultural production, environmental quality, economic development, social well-being. However, a large uncertainty between different Global Circulation Models (GCM) and downscaling methods exist that makes reliable conclusions for a sustainable water management difficult. In order to understand the future climate change of the Upper Blue Nile River Basin, two widely used statistical down scaling techniques namely LARS-WG and SDSM models were applied. Six CMIP3 GCMs for LARS-WG (CSIRO-MK3, ECHAM5-OM, MRI-CGCM2.3.2, HaDCM3, GFDL-CM2.1, CCSM3) model while HadCM3 GCM and canESM2 from CMIP5 GCMs for SDSM were used for climate change analysis. The downscaled precipitation results from the prediction of the six GCMs by LARS WG showed inconsistency and large inter model variability, two GCMs showed decreasing trend while 4 GCMs showed increasing in the range from −7.9 % to +43.7 % while the ensemble mean of the six GCM result showed increasing trend ranged from 1.0 % to 14.4 %. NCCCS GCM predicted maximum increase in mean annual precipitation. However, the projection from HadCM3 GCM is consistent with the multi-model average projection, which predicts precipitation increase from 1.7 % to 16.6 %. Conversely, the result from all GCMs showed a similar continuous increasing trend for maximum temperature (Tmax) and minimum temperature (Tmin) in all three future periods. The change for mean annual Tmax may increase from 0.4 °c to 4.3 °c whereas the change for mean annual Tmin may increase from 0.3 °c to 4.1 °c. Meanwhile, the result from SDSM showed an increasing trend for all three climate variables (precipitation, minimum and maximum temperature) from both HadCM3 and canESM2 GCMs. The relative change of mean annual precipitation range from 2.1 % to 43.8 % while the change for mean annual Tmax and Tmin may increase from 0.4 °c to 2.9 °c and from 0.3 °c to 1.6 °c respectively. The change in magnitude for precipitation is higher in RCP8.5 scenarios than others as expected. The present result illustrate that both down scaling techniques have shown comparable and good ability to simulate the current local climate variables which can be adopted for future climate change study with high confidence for the UBNRB. In order to see the comparative downscaling results from the two down scaling techniques, HadCM3 GCM of A2 scenario was used in common. The result obtained from the two down scaling models were found reasonably comparable and both approaches showed increasing trend for precipitation, Tmax and Tmin. However, the analysis of the downscaled climate data from the two techniques showed, LARS WG projected a relatively higher increase than SDSM.


2018 ◽  
Vol 98 (1) ◽  
pp. 31-48 ◽  
Author(s):  
Dragan Buric ◽  
Vladan Ducic ◽  
Jovan Mihajlovic

In the second half of the 20th and by the beginning of the 21st century the area of Montenegro was dominated by positive air temperature fluctuations and negative precipitation sums. This paper analyses a 60-year period (1951-2010), with the aim to determine air temperature and precipitation deviation between the two 30-year periods: 1951-1980 and 1981-2010. Calculations of mean, mean maximum and mean minimum temperature have been done, as well as annual values of precipitation sums. All three temperature parameters, particularly maximum values, show that the 1981-2010 period was significantly warmer in relation to previous three decades. Significant changes in mean annual precipitation sums between the two observation periods have been recorded on the coast and, locally, in the western part of the country. The results also showed that there was a significant increase in positive deviations of mean maximum temperature in most parts of Montenegro during the 1981-2010 period in relation to the 1951-1980 period, while changes of this type in other observation parameters were mostly minor.


Sign in / Sign up

Export Citation Format

Share Document