scholarly journals Metal Based-oxide Nanoparticles Assisted the Uptake of the Essential Elements and Phytoremediation of Populus Alba : Essential Metabolic Processes and Genetic Stability

Author(s):  
Mohamed F. Ahmed ◽  
Mostafa A. Ibrahim ◽  
Ahmed S. Mansour ◽  
Ahmed N. Emam ◽  
Ashraf B. Abd El-Razik ◽  
...  

Abstract The present study evaluated the phytoremediation activities of Populus alba upon using nano metal-based-oxides (i.e., Fe2O3, ZnO, and Mn2O3-NPs) as analogues of three main heavy metals Fe, Zn and Mn exist in soil as micronutrients at three different concentrations (i.e., 20, 40, and 60 mg/L) compared to the control. The as-prepared nanoparticles have been prepared via co-precipitation method. In addition, the physico-chemical properties were investigated using transmission electron microscopy, Fourier transform infrared spectra, X-ray diffraction and dynamic light scattering techniques. Overall, a significant difference in the biomass production-related parameters such as fresh weight, shoot length, root length, and root number compared to control upon the treatment with micronutrients-based nano-metal-oxides (i.e., Mn2O3 > Fe2O3 > ZnO NPs, respectively), except a significant increase in the root number of Populus alba plant upon their treatment with ZnO NPs compared to other prepared nano-metal-oxides and control. Also, a remarkable increase in the chlorophyll index was monitored upon treatment with Fe2O3 than other used Mn2O3 and ZnO NPs, respectively. Moreover, RAPD-PCR bioassays were applied and the actual 6 primers showed a genetic variation percentage of 34.17% indicating that Populus alba is highly genetically stable even in a highly contaminated environment/soil. All these data enhance the idea of using the Populus alba plant in phytoremediation and heavy metal uptake as micronutrients to clean up the surroundings.

2020 ◽  
Vol 20 (3) ◽  
pp. 1434-1439
Author(s):  
Winisia E. Makirita ◽  
Liu Yong ◽  
Nongyue He ◽  
Ernest R. Mbega ◽  
Musa Chacha ◽  
...  

Nanoparticles (NPs) are technological engineered materials with unique physical and chemical properties, and dimension of less than 100 nm. Nanotechnology has developed at a rapid pace, resulting into tremendous wide application that has resulted into concerns and ecotoxicological consequences. The antimicrobial potentials of the nanoparticles have been extensively studied, however, little has been done on the allied health and environmental toxicity assessments. Thus, the current work evaluated the toxicity effects of the ZnO, TiO2 and Fe3O4 NPs on the survival of the entomopathogenic nematodes (Steinernema carpocapsae), as well as their growth inhibition effects on the nematode symbiotic bacteria (Xenorhabdus nematophila). The metal oxides NPs were characterized by scanning electron microscope and transmission electron microscope. Their toxicity effects were evaluated at various concentrations with the consideration of the media on the toxicity influence. All metal oxides had less influence on the survival of the entomopathogenic nematode and growth of the nematode symbiotic bacterial partner in a concentration dependant manner NPs. The observed toxicity was in the order of Fe3O4 < TiO2 < ZnO NPs respectively, with no significant difference between the NPs. The less toxic effect of the NPs noted may be associated with the ability of entomopathogenic nematodes and their bacterial partner to tolerate toxicants. Nonetheless, other toxicity parameter of NPs on the beneficial nematodes needs to be evaluated for consideration of the compatibility potential of the nematodes and NPs for pest management.


2016 ◽  
Vol 13 (1) ◽  
pp. 1-6
Author(s):  
Baghdad Science Journal

Soil invertebrates community an important role as part of essential food chain and responsible for the decomposition in the soil, helps soil aeration , nutrients recycling and increase agricultural production by providing the essential elements necessary for photosynthesis and energy flow in ecosystems.The aim of the present study was to investigate the soil invertebrates community in one of the date palms plantation in Aljaderia district South of Baghdad, , and their relationships with some physical and chemical properties of the soil , as Five randomly distributed replicates of soil samples were collected monthly. Invertebrates samples were sorted from the soil with two methods, direct method to isolate large invertebrates and indirectly to isolate small invertebrates using wet funnel method. The study also included the determination of physical and chemical factors of the soil (Temperature, Salinity, pH, Organic matter, Humidity, In addition to the soil texture).Monthly fluctuations in physical and chemical characteristics of the soil and the total invertebrates community study site were determined. Significant correlations the of the invertebrates community and each of temperature, organic matter, and humidity were observed. The study revealed that the temperature of the soil ranged between 5 to 25 C0 , The salinity concentration ranged between 1.1-1.9 ‰, The pH values ranged between 7.3 to 7.8 and the percentage of soil moisture ranged between 15 - 25% , Soil samples were composed of 44.6 % Clay, 19.7% Silt and 35.5% Sand.A total of 4625 individuals of soil invertebrates belonging to 16 taxa were sorted , within which the adult and larval insects were the most abundant, and from them 1283 individuals were sorted , represented 28% of the total numbers, followed by Isopoda , which 1030 individuals of them were sorted, In addition to Nematode, Oligochaetes Annelids family Enchytraeidae, and Earthworms family Lumbricida, Species of Chilopoda, Diplopoda, mites, land snails and slugs. The highest total individual number were recorded recorded durim moderate temperature months, February, March and April amounted to 838, 801 and 813 individuals, respectively.A significant correlation was mated between total number of soil invertebrates and each of temperature, organic matter and humidity. The significant difference in means was calculated according to LSD test.


2020 ◽  
pp. 13-20
Author(s):  
Luma Ahmed ◽  
Eitemad S. Fadhil ◽  
Ayad F. Mohammed

This article describes the synthesis of ZnO nanoparticles (Nps) using the co-precipitation method and then calcinated at 500oC for 2 h. The photo activity of ZnO nanoparticles was examined in photo decolorization of methyl green dye under artificial UV -A light. This prepared photocatalyst (ZnO Np) was modified his surface by 2% Ag doped using the photo deposition method under inert gas for 3h. The characterization of undoped and 2% Ag doped ZnO Nps were estimated by Fourier-transform infrared spectroscopy (FT-IR), X-ray Diffraction (XRD), and Atomic force microscopy (AFM). In FT-IR analysis, the new peaks occurred around 624-778 cm-1 confirmed the Ag really is doped on prepared ZnO Np. Based on data from XRD, the mean crystal size was reduced with doped the 2% Ag. The AFM images for the prepared photocatalysts ensure that the shapes of all samples are semi-spherical with nanometer size. Series of kinetics experiments were performed for the photocatalytic decolourization of methyl green dye using undoped and 2% Ag doped ZnO nanoparticle and found to be pseudo-first-order kinetics.


Author(s):  
Ing Hua Tang ◽  
Siti Zarina Mohd So’ad ◽  
Hendrik O. Lintang ◽  
Leny Yuliati

Zinc oxide (ZnO) is appeared to be an attractive material for application for multidisciplinary fields, owing to its unique physical and chemical properties. In this study, ZnO was synthesized using the co-precipitation method, where the zinc acetate was used as the precursor. The ZnO was further modified by adding different amounts of polyvinylpyrrolidone (PVP) via simple physical mixing method to obtain PVP/ZnO composites. The ZnO and the PVP/ZnO composites were characterized using Fourier transform infrared (FTIR), diffuse reflectance ultraviolet-visible (DR UV-Vis), and fluorescence spectroscopy. The FTIR spectra detected the presence of ZnO group and the functional groups from the PVP. The PVP peaks become more apparent with the increase of the PVP amount. From the DR UV-Vis spectra, no significant change was observed after modification with the PVP, and all composites showed similar broad absorption band to that of the ZnO. The fluorescence spectra showed that the addition of PVP decreased the emission intensity and red shifted the peak wavelength, indicating certain interactions between the ZnO and the added PVP. Quenching study was investigated in the presence of nitrite ions (NO2-) with various concentrations (2-10 mM). A linear Stern-Volmer plot was observed and the highest quenching constant rate (KSV) was obtained on the PVP/ZnO sample with PVP content of 0.1 wt%. This study demonstrated that the addition of the PVP on the ZnO improved the interaction between the ZnO and the NO2-, which will be one of the important factors for sensing and catalytic applications for detection and conversion of NO2-.


Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6191
Author(s):  
Alexandra-Elisabeta Stamate ◽  
Rodica Zăvoianu ◽  
Octavian Dumitru Pavel ◽  
Ruxandra Birjega ◽  
Andreea Matei ◽  
...  

Mechanical activation and mechanochemical reactions are the subjects of mechanochemistry, a special branch of chemistry studied intensively since the 19th century. Herein, we comparably describe two synthesis methods used to obtain the following layered double hydroxide doped with cerium, Mg3Al0.75Ce0.25(OH)8(CO3)0.5·2H2O: the mechanochemical route and the co-precipitation method, respectively. The influence of the preparation method on the physico-chemical properties as determined by multiple techniques such as XRD, SEM, EDS, XPS, DRIFT, RAMAN, DR-UV-VIS, basicity, acidity, real/bulk densities, and BET measurements was also analyzed. The obtained samples, abbreviated HTCe-PP (prepared by co-precipitation) and HTCe-MC (prepared by mechanochemical method), and their corresponding mixed oxides, Ce-PP (resulting from HTCe-PP) and Ce-MC (resulting from HTCe-MC), were used as base catalysts in the self-condensation reaction of cyclohexanone and two Claisen–Schmidt condensations, which involve the reaction between an aromatic aldehyde and a ketone, at different molar ratios to synthesize compounds with significant biologic activity from the flavonoid family, namely chalcone (1,3-diphenyl-2-propen-1-one) and flavone (2-phenyl-4H-1benzoxiran-4-one). The mechanochemical route was shown to have indisputable advantages over the co-precipitation method for both the catalytic activity of the solids and the costs.


Catalysts ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 547
Author(s):  
Mohamed Fadlalla ◽  
Glenn Maguire ◽  
Holger Friedrich

The aminohydroxylation reaction of olefins is a key organic transformation reaction, typically carried out homogeneously with toxic and expensive osmium (Os) catalysts. Therefore, heterogenisation of this reaction can unlock its industrial potential by allowing reusability of the catalyst. Os–Zn–Al hydrotalcite-like compounds (HTlcs), as potential heterogeneous aminohydroxylation catalysts, were synthesised by the co-precipitation method and characterised by several techniques. Reaction parameters (i.e., solvent system, reaction temperature, and catalyst structure) were optimized with cyclohexene, styrene, and hexene as substrates. The different classes of olefins (aliphatic, aromatic, and functionalised) that were tested gave >99% conversion and high selectivity (>97%) to the corresponding β-amino alcohol. The catalyst HTlc structure had a significant effect on the reaction time and yield of the β-amino alcohols. Under the same testing conditions, a heat treated catalyst (non-HTlc) showed a shorter reaction time, but drop in the yield of β-amino alcohols and rise in diol formation was observed. Leaching tests showed that 2.9% and 3.4% of Os (inactive) leached from the catalyst to the reaction solution when MeCN/water (1:1 v/v) and t-BuOH/water (1:1 v/v), respectively, were used as the solvent system. Recycling studies showed that the catalyst can be reused at least thrice, with no significant difference in the yield of the β-amino-alcohol.


Catalysts ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 542
Author(s):  
Taeho Lim ◽  
Min Su Han

Herein, an easily accessible and efficient green method for the reduction of nitroarene compounds was developed using metal oxide catalysts. Heterogeneous metal oxides with or without Pd were prepared by a simple and scalable co-precipitation method and used for the reduction of nitroarenes. A fluorescence-based high-throughput screening (HTS) method was also developed for the rapid analysis of the reaction conditions. The catalytic activity of the metal oxides and reaction conditions were rapidly screened by the fluorescence-based HTS method, and Pd/CuO showed the highest catalytic activity under mild reaction conditions. After identifying the optimal reaction conditions, various nitroarenes were reduced to the corresponding aniline derivatives by Pd/CuO (0.005 mol% of Pd) under these conditions. Furthermore, the Pd/CuO catalyst was used for the one-pot Suzuki–Miyaura cross-coupling/reduction reaction. A gram-scale reaction (20 mmol) was successfully performed using the present method, and Pd/CuO showed high reusability without a loss of catalytic activity for five cycles.


2021 ◽  
Vol 21 (12) ◽  
pp. 5896-5905
Author(s):  
Radha Ahuja ◽  
Anjali Sidhu ◽  
Anju Bala

Nanotechnology has the ability to produce novel nano-sized materials with excellent physical and chemical properties to act against phytopathogenic diseases, essential for revolution of agriculture and food industry. The development of facile, reliable and eco-friendly processes for the synthesis of biologically active nanomaterials is an important aspect of nanotechnology. In the present paper, we attempted to compare sonochemical and co-precipitation method for the synthesis of metal sulfide nanoparticles (MS-NPs) for their structural and antifungal properties against various phytopathogenic fungi of rice. The preparation of nanospheres (NSs) and nano rods (NRs) of CuS, FeS and MnS was monitored by UV-Visible spectroscopy complemented by transmission electron microscope (TEM), scanning electron microscope (SEM), atomic force microscopy (AFM), dynamic light scattering (DLS) and Zeta potential analyser. Sonochemical method resulted in formation of spherical shaped nanoparticles of size (7–120 nm), smaller than those of nanorods (50–200 nm) prepared by co-precipitation produced. It was observed that the metal sulfide nanospheres exhibited a better antifungal potential against D. oryzae, C. lunata and S. oryzae as compared to rod shaped metal sulfide nanoparticles. Smaller size and large surface area of spherical shaped particles opens up an important perspective of the prepared MS-NPs.


2018 ◽  
Vol 8 (4) ◽  
pp. 516-521 ◽  
Author(s):  
Kinfe Kassa ◽  
Yesuf Ali ◽  
Wubishet Zewdie

Abstract A pot experiment was conducted at Arba Minch, Ethiopia to study the effects of urine on soil properties and yield of maize in natural settings. The pot treatments consisted of 500, 800, 1,000 and 1,200 ml of neat human urine collected from a UDDT (Urine Diversion Dry Toilet) added at different portions and control. The results showed that the response of the maize for most of the variables was very well expressed or significantly different at the application rate of 500 ml of urine; however, there was no significant difference between the 500 ml and the rest of the application. A significant increase in height, diameter, and length of leaf of maize was found in the urine treated soils. An improvement in soil phosphate chemical properties was noticed with increasing addition of urine; however, there was no significant increase in the ammonium nitrogen content and pH. The salinity of treated soil significantly increased at the bottom of the pot when compared with the control. In order to limit the increase in salinity of the soil and to get optimum maize growth in natural conditions, 500 ml urine addition per maize is recommended. The findings encourage the use of urine as fertilizer and a possible sink for UDDT waste.


2015 ◽  
Vol 719-720 ◽  
pp. 132-136 ◽  
Author(s):  
Ghazaleh Allaedini ◽  
Siti Masrinda Tasirin ◽  
Meor Zainal Meor Talib ◽  
Payam Aminayi ◽  
Ifa Puspasari

This study presents comparisons between the morphologies and photoluminescence properties of tin oxide (SnO2) nanoparticles prepared by two methods, namely the sol gel and the co-precipitation methods. The characteristics of the particles were analyzed using X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The particles prepared using the sol-gel method have a finer particle size and more spherical shape. However, no significant difference was observed in terms of morphology and homogeneity in the samples produced by either the co-precipitation or sol-gel methods. In contrast, the photoluminescence study shows that the emission peak for powder prepared using the sol-gel method was higher than that of the co-precipitation method.


Sign in / Sign up

Export Citation Format

Share Document