scholarly journals Identifying Dihydropyrimidine Dehydrogenase as a Novel Regulator of Hepatic Steatosis

Author(s):  
Kelly E. Sullivan ◽  
Sheetal Kumar ◽  
Xin Liu ◽  
Ye Zhang ◽  
Emily Koning ◽  
...  

Abstract Pyrimidine catabolism is implicated in hepatic steatosis. Dihydropyrimidine Dehydrogenase (DPYD) is an enzyme responsible for uracil and thymine catabolism, and DPYD human genetic variability affects clinically observed toxicity following 5-Fluorouracil (5-FU) administration. In an in vitro model of diet-induced steatosis, the pharmacologic inhibition of DPYD resulted in protection from lipid accumulation. Additionally, a gain-of-function mutation of DPYD, created through clustered regularly interspaced short palindromic repeats associated protein 9 (CRISPR-Cas9) engineering, led to an increased lipid burden, which was associated with altered mitochondrial functionality in a hepatocarcionma cell line. The studies presented herein describe a novel role for DPYD in hepatocyte metabolic regulation as a modulator of hepatic steatosis.

2021 ◽  
Author(s):  
Kelly E Sullivan ◽  
Sheetal Kumar ◽  
Ye Zhang ◽  
Emily de Koning ◽  
Jing Yuan ◽  
...  

Pyrimidine catabolism is implicated in hepatic steatosis. Dihydropyrimidine Dehydrogenase (DPYD) is an enzyme responsible for uracil as well as thymine catabolism, and human genetic variability in this enzyme has been described in relation to clinically observed toxicity following 5-Fluorouracil (5-FU) administration. We have demonstrated that pharmacologic inhibition of DPYD is protective in a human in vitro model of diet-induced steatosis. A gain-of-function mutation in DPYD through CRISPR-Cas9 engineering leads to an increased lipid burden associated with altered mitochondrial functionality in a hepatocarcionma cell line. These studies uncovered a novel role DPYD plays in regulating the metabolic phenotype of hepatocytes and therefore identifies DPYD as a key modulator of hepatic steatosis.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Pei-Yao Liu ◽  
Cheng-Cheung Chen ◽  
Chia-Ying Chin ◽  
Te-Jung Liu ◽  
Wen-Chiuan Tsai ◽  
...  

AbstractIn obese adults, nonalcoholic fatty liver disease (NAFLD) is accompanied by multiple metabolic dysfunctions. Although upregulated hepatic fatty acid synthesis has been identified as a crucial mediator of NAFLD development, the underlying mechanisms are yet to be elucidated. In this study, we reported upregulated expression of gene related to anergy in lymphocytes (GRAIL) in the livers of humans and mice with hepatic steatosis. Grail ablation markedly alleviated the high-fat diet-induced hepatic fat accumulation and expression of genes related to the lipid metabolism, in vitro and in vivo. Conversely, overexpression of GRAIL exacerbated lipid accumulation and enhanced the expression of lipid metabolic genes in mice and liver cells. Our results demonstrated that Grail regulated the lipid accumulation in hepatic steatosis via interaction with sirtuin 1. Thus, Grail poses as a significant molecular regulator in the development of NAFLD.


2018 ◽  
Vol 49 (5) ◽  
pp. 1870-1884 ◽  
Author(s):  
Chian-Jiun Liou ◽  
Ciao-Han Wei ◽  
Ya-Ling Chen ◽  
Ching-Yi Cheng ◽  
Chia-Ling Wang ◽  
...  

Background/Aims: Fisetin is a naturally abundant flavonoid isolated from various fruits and vegetables that was recently identified to have potential biological functions in improving allergic airway inflammation, as well as anti-oxidative and anti-tumor properties. Fisetin has also been demonstrated to have anti-obesity properties in mice. However, the effect of fisetin on nonalcoholic fatty liver disease (NAFLD) is still elusive. Thus, the present study evaluated whether fisetin improves hepatic steatosis in high-fat diet (HFD)-induced obese mice and regulates lipid metabolism of FL83B hepatocytes in vitro. Methods: NAFLD was induced by HFD in male C57BL/6 mice. The mice were then injected intraperitoneally with fisetin for 10 weeks. In another experiment, FL83B cells were challenged with oleic acid to induce lipid accumulation and treated with various concentrations of fisetin. Results: NAFLD mice treated with fisetin had decreased body weight and epididymal adipose tissue weight compared to NAFLD mice. Fisetin treatment also reduced liver lipid droplet and hepatocyte steatosis, alleviated serum free fatty acid, and leptin concentrations, significantly decreased fatty acid synthase, and significantly increased phosphorylation of AMPKα and the production of sirt-1 and carnitine palmitoyltransferase I in the liver tissue. In vitro, fisetin decreased lipid accumulation and increased lipolysis and β-oxidation in hepatocytes. Conclusion: This study suggests that fisetin is a potential novel treatment for alleviating hepatic lipid metabolism and improving NAFLD in mice via activation of the sirt1/AMPK and β-oxidation pathway.


2021 ◽  
Vol 11 ◽  
Author(s):  
Ting Li ◽  
Ting Fang ◽  
Linxin Xu ◽  
Xiangyang Liu ◽  
Xiaoyu Li ◽  
...  

Background: Metabolic associated fatty liver disease (MAFLD), characterized by hepatic lipid accumulation and fatty degeneration, is intertwined with obesity and type 2 diabetes mellitus (T2DM). Empagliflozin is a sodium-glucose cotransporter-2 inhibitor that effectively lowers blood glucose, but its effect on MAFLD and associated mechanisms are not fully understood.Methods: Eight-week-old db/db mice, an in vivo model, were administered empagliflozin or saline intragastrically. A hepatocyte steatosis model was established by inducing HL7702 cells with high glucose and palmitic acid and then treated with or without empagliflozin. The autophagy inhibitor (3-methyladenine, 3-MA) and AMP-activated protein kinase (AMPK) activator (AICAR)/inhibitor (Compound C) were used to determine the involvement of AMPK and autophagy in the regulation of lipid accumulation by empagliflozin. Ten-eleven translocation 2 (TET2) knockdown was achieved by siRNA transfection. Hepatic steatosis was evaluated by Oil Red O staining and triglyceride quantification. Immunohistochemistry, immunofluorescence, and western blot were performed to assess protein levels.Results: Empagliflozin alleviated liver steatosis in db/db mice and reduced triglyceride content and lipid accumulation in the hepatocyte steatosis model. Empagliflozin elevated autophagy, accompanied by an increase in p-AMPK and TET2. Both 3-MA and Compound C abolished the ability of empagliflozin to induce autophagy and reduce hepatic steatosis, while these effects could be recapitulated by AICAR treatment. TET2 knockdown resulted in autophagy inhibition and lipid accumulation despite empagliflozin treatment.Conclusion: Empagliflozin improves hepatic steatosis through the AMPK-TET2-autophagy pathway. The use of empagliflozin as a treatment for preventing and treating MAFLD in patients with T2DM warrants further study.


2021 ◽  
Author(s):  
Xiaocheng Huang ◽  
Jian Sun ◽  
Chenchen Bian ◽  
Shanghong Ji ◽  
Hong ji

Abstract Background: The liver is the primary organ for frontline immune defense and lipid metabolism. Excessive lipid accumulation in the liver severely affects its metabolic homeostasis and causes metabolic diseases. Docosahexaenoic acid (DHA) is known for its beneficial effects on lipid metabolism and anti-inflammation, but its molecular mechanism remains unknown, especially in fish. In this study, we evaluated the protective effects of DHA on hepatic steatosis of grass carp (Ctenopharyngodon idella) in vivo and in vitro and mainly focused on lipogenesis and inflammation. Grass carp were fed with purified diets supplemented with 0%, 0.5% and 1% DHA for 8 weeks in vivo. Hepatocytes were treated with palmitic acid (PA) (200 μM) with or without DHA (50 or 100 μM) for 24 h in vitro. In addition, Compound C (CC, the inhibitor of AMP-activated protein kinase) was used to examine the mechanism of DHA on hepatic steatosis in vitro.Results: In this study, 1% DHA significantly decreased the liver triglyceride (TG), malondialdehyde (MDA), serum tumor necrosis factor α (TNFα) and nuclear factor kappa B (NFκB) contents. DHA (100 μM) effectively attenuated PA-induced lipid accumulation (P<0.05). Furthermore, DHA significantly inhibited endoplasmic reticulum (ER) stress and stimulated the expression of AMP-activated protein kinase (AMPK) and its downstream factors related to hepatic inflammation and lipogenesis in vivo and in vitro. However, the effects of DHA could be abrogated by CC in vitro.Conclusions: DHA exerted a protective effect on hepatic steatosis by inhibiting ER stress, improving antioxidant ability, relieving hepatic inflammation and inhibiting hepatic lipogenesis in an AMPK-dependent manner. Our findings give a theoretical foundation for further elucidation of the beneficial role of DHA in vertebrates.


2016 ◽  
Vol 28 (2) ◽  
pp. 174
Author(s):  
M. A. Roberts ◽  
L. F. Campos-Chillon ◽  
M. Barceló-Fimbres ◽  
J. L. Altermatt

Current bovine embryo culture methods result in accumulation of lipids and reactive oxygen species, possibly due to sub-optimal metabolic regulation. These effects decrease the cryopreservation survival and implantation potential of in vitro-produced (IVP) embryos. Forskolin has been shown to decrease lipid accumulation, and vitamin K2 (Vit K2) is thought to decrease oxidative stress from in vitro conditions. The aims of this study were (1) to assess lipid content of embryos cultured with or without forskolin and Vit K2 in both continuous and sequential SOF-based medium, and (2) to examine individual and combined effects of forskolin and Vit K2 on mitochondrial polarity. For Experiment 1, a 2 × 2 × 2 factorial design was used to compare culture systems (continuous v. 3-step sequential), additives (no additive v. Vit K2 (0.5 mM at Day 3) plus forskolin (10 µM at Day 5), and blastocyst stage [6 (early) v. 7 (late)] on overall lipid content. For Experiment 2, mitochondrial polarity of stage 7 blastocysts was analysed from the following groups: no additive, Vit K2 (0.5 mM at Day 3), forskolin (10 µM at Day 5), and Vit K2 plus forskolin. IVP embryos (n = 199, Experiment 1; n = 45, Experiment 2) were produced by standard procedures and cultured at 38.5°C in 5% O2, 5% CO2, and 90% N2. For Experiment 1, embryos were stained with 1 μg mL–1 Nile Red, and two images per embryo were taken along the equatorial plane at 40× magnification. For Experiment 2, embryos were stained with 300 nM MitoTracker Red CMX-Rosamine, and 10 images per embryo were acquired by confocal microscopy with a 5-μm step size at 40× magnification. For both experiments, fluorescence intensity (FI) of each image was measured by Image PRO software with embryo controlled for and background fluorescence corrected. Data (Table 1) were analysed by ANOVA and means were compared by Tukey’s HSD. In Experiment 1, embryos cultured with forskolin and Vit K2 showed decreased lipid content in both the early and late stage (P < 0.05), with no effect from culture system (P > 0.05). In Experiment 2, forskolin and Vit K2 individually increased mitochondrial polarity (P < 0.05), but had no combined effect (P > 0.05). In conclusion, these data suggest that while a combination of forskolin and Vit K2 as media additives reduces lipid accumulation, the interaction between these metabolic regulators may negate their individual effects on mitochondrial polarity. Table 1.Fluorescence intensity of Nile Red and MitoTracker Red dyes between treatment groups


2021 ◽  
Vol 10 (11) ◽  
pp. 2297
Author(s):  
Michaela Kripnerová ◽  
Hamendra Singh Parmar ◽  
Jiří Šána ◽  
Alena Kopková ◽  
Lenka Radová ◽  
...  

Sarcomas are a heterogeneous group of mesenchymal tumours, with a great variability in their clinical behaviour. While our knowledge of sarcoma initiation has advanced rapidly in recent years, relatively little is known about mechanisms of sarcoma progression. JUN-murine fibrosarcoma progression series consists of four sarcoma cell lines, JUN-1, JUN-2, JUN-2fos-3, and JUN-3. JUN-1 and -2 were established from a single tumour initiated in a H2K/v-jun transgenic mouse, JUN-3 originates from a different tumour in the same animal, and JUN-2fos-3 results from a targeted in vitro transformation of the JUN-2 cell line. The JUN-1, -2, and -3 cell lines represent a linear progression from the least transformed JUN-2 to the most transformed JUN-3, with regard to all the transformation characteristics studied, while the JUN-2fos-3 cell line exhibits a unique transformation mode, with little deregulation of cell growth and proliferation, but pronounced motility and invasiveness. The invasive sarcoma sublines JUN-2fos-3 and JUN-3 show complex metabolic profiles, with activation of both mitochondrial oxidative phosphorylation and glycolysis and a significant increase in spared respiratory capacity. The specific transcriptomic profile of invasive sublines features very complex biological relationships across the identified genes and proteins, with accentuated autocrine control of motility and angiogenesis. Pharmacologic inhibition of one of the autocrine motility factors identified, Ccl8, significantly diminished both motility and invasiveness of the highly transformed fibrosarcoma cell. This progression series could be greatly valuable for deciphering crucial aspects of sarcoma progression and defining new prognostic markers and potential therapeutic targets.


2017 ◽  
Vol 235 (3) ◽  
pp. 223-235 ◽  
Author(s):  
Jin-Bong Lee ◽  
Sung-Jin Yoon ◽  
Sang-Hyun Lee ◽  
Moo-Seung Lee ◽  
Haiyoung Jung ◽  
...  

Healthy expansion of adipose tissue maintains metabolic homeostasis by storing excess chemical energy in increased fat mass. The STAT5-PPAR gamma pathway reportedly regulates adipocyte differentiation, lipid metabolism and adipogenesis. Ginsenoside Rg3 is one of the diverse groups of steroidal saponins, the major active components of ginseng, which have demonstrated pharmacological properties. In this study, we evaluated the therapeutic effects of ginsenoside Rg3 under pathological conditions in vitro and in vivo. We examined the effects of ginsenoside Rg3 on glucose level, insulin sensitivity and lipogenesis in high-fat diet-fed C57BL/6 mice. Ginsenoside Rg3 was also applied to the pre-adipocyte cell line 3T3-L1 to assess the impact on lipogenesis. Ginsenoside Rg3 reduced epididymal white adipose tissue (eWAT) size and hepatic steatosis, and the amount of triglycerides (TGs) in both eWAT and liver. Similar to the murine model, Rg3-treated 3T3-L1 cells showed a reduction in lipid accumulation and amount of total TGs. Ginsenoside Rg3 regulates the expression of PPAR gamma though STAT5 in vitro and in vivo. According to our results, lipid metabolism-related genes were downregulated in the high-fat mice and 3T3-L1 cell line. Rg3 shows potential for the amelioration of obesity-induced pathology, acting though STAT5-PPAR gamma to facilitate the healthy functioning of adipose tissue. This is the first report of evidence that obesity-induced insulin resistance and lipotoxicity can be treated with ginsenoside Rg3, which acts though the STAT5-PPAR gamma pathway in vivo and in vitro.


2022 ◽  
Author(s):  
Xiaohui Wei ◽  
Jielei Zhang ◽  
Min Tang ◽  
Xuejiao Wang ◽  
Nengguang Fan ◽  
...  

Abstract Background: Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide. The fat mass and obesity–associated protein (FTO) has been shown to be involved in obesity; however, its role in NAFLD and the underlying molecular mechanisms remain largely unknown. Methods: FTO expression was first examined in the livers of patients with NAFLD and animal and cellular models of NAFLD using quantitative real-time polymerase chain reaction and western blotting. Next, its role in lipid accumulation in hepatocytes was assessed both in vitro and in vivo via gene overexpression and knockdown studies. Results: FTO expression was increased in the livers of mice and humans with hepatic steatosis, probably due to its decreased ubiquitination. FTO overexpression in HepG2 cells induced triglyceride accumulation, whereas FTO knockdown exerted an opposing effect. Consistent with the findings of in vitro studies, adeno-associated viruses 8 (AAV8)-mediated FTO overexpression in the liver promoted hepatic steatosis in C57BL/6J mice. Mechanistically, FTO inhibited the mRNA expression of peroxisome proliferator-activated receptor α (PPARα) in hepatocytes. Activation of PPARα by the PPARα agonist GW7647 reversed lipid accumulation in hepatocytes induced by FTO overexpression.Conclusions: Overall, FTO expression is increased in NAFLD, and it promotes hepatic steatosis by targeting PPARα.


Sign in / Sign up

Export Citation Format

Share Document