scholarly journals Automatic Detection of Arrhythmias From An ECG Signal Using An Auto-Encoder And SVM Classifier

Author(s):  
Manoj Kumar Ojha ◽  
Sulochna Wadhwani ◽  
Arun Kumar Wadhwani ◽  
Anupam Shukla

Abstract Millions of people worldwide are affected by arrhythmias. Arrhythmias are abnormal activity of the heart functioning. Some arrhythmias are harmful to the heart and can cause sudden mortality. The electrocardiogram (ECG) is a significant tool in cardiology for the diagnosis of arrhythmia beats. Computer-aided diagnosis (CAD) systems have been proposed in several studies to automatically classify different types of arrhythmias from ECG signals. To improve the classification of arrhythmias, a new end-to-end feature learning and classification model has been developed. This work focuses on the implementation of a one-dimensional convolution neural network (1D-CNN) model based on an auto-encoder convolution network (ACN) that learned the best ECG features from each heartbeat window. After that, we applied a Support Vector Machine (SVM) classifier for auto-encode features in order to detect the four different types of arrhythmic beats, including normal beats. These arrhythmia beats are left bundle branch block (L), right bundle branch block (R), paced beats (P), and premature ventricular contractions (V). using the MIT-BIH arrhythmia database. The statistical performance of the model is evaluated using tenfold cross-validation strategies and obtained as an overall accuracy of 98.84%, average accuracy of 99.53%, sensitivity of 98.24% and precision of 97.58%, respectively. This model has presents better results than other state-of-the-art models. Therefore, this approach may also help in clinical heart care systems.

Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1914
Author(s):  
Mehmet Ali Kobat ◽  
Ozkan Karaca ◽  
Prabal Datta Barua ◽  
Sengul Dogan

Background and objective: Arrhythmia is a widely seen cardiologic ailment worldwide, and is diagnosed using electrocardiogram (ECG) signals. The ECG signals can be translated manually by human experts, but can also be scheduled to be carried out automatically by some agents. To easily diagnose arrhythmia, an intelligent assistant can be used. Machine learning-based automatic arrhythmia detection models have been proposed to create an intelligent assistant. Materials and Methods: In this work, we have used an ECG dataset. This dataset contains 1000 ECG signals with 17 categories. A new hand-modeled learning network is developed on this dataset, and this model uses a 3D shape (prismatoid) to create textural features. Moreover, a tunable Q wavelet transform with low oscillatory parameters and a statistical feature extractor has been applied to extract features at both low and high levels. The suggested prismatoid pattern and statistical feature extractor create features from 53 sub-bands. A neighborhood component analysis has been used to choose the most discriminative features. Two classifiers, k nearest neighbor (kNN) and support vector machine (SVM), were used to classify the selected top features with 10-fold cross-validation. Results: The calculated best accuracy rate of the proposed model is equal to 97.30% using the SVM classifier. Conclusion: The computed results clearly indicate the success of the proposed prismatoid pattern-based model.


Author(s):  
Zepei Wu ◽  
Shuo Liu ◽  
Delong Zhao ◽  
Ling Yang ◽  
Zixin Xu ◽  
...  

AbstractCloud particles have different shapes in the atmosphere. Research on cloud particle shapes plays an important role in analyzing the growth of ice crystals and the cloud microphysics. To achieve an accurate and efficient classification algorithm on ice crystal images, this study uses image-based morphological processing and principal component analysis, to extract features of images and apply intelligent classification algorithms for the Cloud Particle Imager (CPI). Currently, there are mainly two types of ice-crystal classification methods: one is the mode parameterization scheme, and the other is the artificial intelligence model. Combined with data feature extraction, the dataset was tested on ten types of classifiers, and the highest average accuracy was 99.07%. The fastest processing speed of the real-time data processing test was 2,000 images/s. In actual application, the algorithm should consider the processing speed, because the images are in the order of millions. Therefore, a support vector machine (SVM) classifier was used in this study. The SVM-based optimization algorithm can classify ice crystals into nine classes with an average accuracy of 95%, blurred frame accuracy of 100%, with a processing speed of 2,000 images/s. This method has a relatively high accuracy and faster classification processing speed than the classic neural network model. The new method could be also applied in physical parameter analysis of cloud microphysics.


2020 ◽  
Vol 10 (18) ◽  
pp. 6417 ◽  
Author(s):  
Emanuele Lattanzi ◽  
Giacomo Castellucci ◽  
Valerio Freschi

Most road accidents occur due to human fatigue, inattention, or drowsiness. Recently, machine learning technology has been successfully applied to identifying driving styles and recognizing unsafe behaviors starting from in-vehicle sensors signals such as vehicle and engine speed, throttle position, and engine load. In this work, we investigated the fusion of different external sensors, such as a gyroscope and a magnetometer, with in-vehicle sensors, to increase machine learning identification of unsafe driver behavior. Starting from those signals, we computed a set of features capable to accurately describe the behavior of the driver. A support vector machine and an artificial neural network were then trained and tested using several features calculated over more than 200 km of travel. The ground truth used to evaluate classification performances was obtained by means of an objective methodology based on the relationship between speed, and lateral and longitudinal acceleration of the vehicle. The classification results showed an average accuracy of about 88% using the SVM classifier and of about 90% using the neural network demonstrating the potential capability of the proposed methodology to identify unsafe driver behaviors.


2020 ◽  
Vol 11 (1) ◽  
pp. 48-70 ◽  
Author(s):  
Sivaiah Bellamkonda ◽  
Gopalan N.P

Facial expression analysis and recognition has gained popularity in the last few years for its challenging nature and broad area of applications like HCI, pain detection, operator fatigue detection, surveillance, etc. The key of real-time FER system is exploiting its variety of features extracted from the source image. In this article, three different features viz. local binary pattern, Gabor, and local directionality pattern were exploited to perform feature fusion and two classification algorithms viz. support vector machines and artificial neural networks were used to validate the proposed model on benchmark datasets. The classification accuracy has been improved in the proposed feature fusion of Gabor and LDP features with SVM classifier, recorded an average accuracy of 93.83% on JAFFE, 95.83% on CK and 96.50% on MMI. The recognition rates were compared with the existing studies in the literature and found that the proposed feature fusion model has improved the performance.


2014 ◽  
Vol 14 (05) ◽  
pp. 1450066 ◽  
Author(s):  
MANAB KUMAR DAS ◽  
SAMIT ARI

In this paper, the conventional Stockwell transform is effectively used to classify the ECG arrhythmias. The performance of ECG classification mainly depends on feature extraction based on an efficient formation of morphological and temporal features and the design of the classifier. Feature extraction is the important component of designing the system based on pattern recognition since even the best classifier will not perform better if the good features are not selected properly. Here, the S-transform (ST) is used to extract the morphological features which is appended with temporal features. This feature set is independently classified using artificial neural network (NN) and support vector machine (SVM). In this work, five classes of ECG beats (normal, ventricular, supra ventricular, fusion and unknown beats) from Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) arrhythmia database are classified according to AAMI EC57 1998 standard (Association for the Advancement of Medical Instrumentation). Performance is evaluated on several normal and abnormal ECG signals of MIT-BIH arrhythmias database using two classifier techniques: ST with NN classifier (ST-NN) and other proposed ST with SVM classifier (ST-SVM). The proposed method achieves accuracy of 98.47%. The performance of the proposed technique is compared with ST-NN and earlier reported technique.


2011 ◽  
Vol 3 ◽  
pp. BECB.S7503 ◽  
Author(s):  
Sangeetha Subramaniam ◽  
Monica Mehrotra ◽  
Dinesh Gupta

There is an urgent need to develop novel anti-malarials in view of the increasing disease burden and growing resistance of the currently used drugs against the malarial parasites. Proliferation inhibitors targeting P. falciparum intraerythrocytic cycle are one of the important classes of compounds being explored for its potential to be novel antimalarials. Support Vector Machine (SVM) based model developed by us can facilitate rapid screening of large and diverse chemical libraries by reducing false hits and prioritising compounds before setting up expensive High Throughput Screening experiment. The SVM model, trained with molecular descriptors of proliferation inhibitors and non-inhibitors, displayed a satisfactory performance on cross validations and independent data set, with an average accuracy of 83% and AUC of 0.88. Intriguingly, the method displayed remarkable accuracy for the recently submitted P. falciparum whole cell screening datasets. The method also predicted several inhibitors in the National Cancer Institute diversity set, mostly similar to the known inhibitors.


Agriculture productivity is the main factor for improving economic status of India. Reduction in production rate is mainly due to various diseases in plants. Identification of plant disease in early stage is the main challenge for improving the production rate as well as economic status. This paper presents automatic disease detection in cotton crop for three types of diseases Alternaria Leaf Spot Fungal Disease (ALSFD), Grey Mildew Cotton Disease (GMCD), and Rust Foliar Fungal Disease (RFFD). The K-means clustering algorithm is used for disease segmentation for cotton leaf. The diseased cluster is segmented into three clusters. From cluster 2 the features Mean , Contrast, Energy, Correlation, Standard Deviation, Variance , Entropy, and Kurtosis are extracted. The extracted features for 30 samples are given to Artificial Neural Network (ANN) and Support Vector Machine (SVM) classifiers for disease classification. The performance of these classifiers are compared. The ALSF disease is classified 77.4% for ANN and 84.3% for SVM, GMC disease is 87.8% for ANN and 98.7% in SVM, RFF disease is 90.1%for ANN and 93.2% for SVM. The overall average accuracy of ANN classifier is 85.1% for three diseases and overall average accuracy for SVM is 92.06% for three diseases. It is clearly observed from the analysis SVM classifier gives accurate disease detection compared to ANN.


Transport ◽  
2018 ◽  
Vol 33 (3) ◽  
pp. 598-608 ◽  
Author(s):  
Teng Wang ◽  
Kasthurirangan Gopalakrishnan ◽  
Omar Smadi ◽  
Arun K. Somani

Pavements are critical man-made infrastructure systems that undergo repeated traffic and environmental loadings. Consequently, they deteriorate with time and manifest certain distresses. To ensure long-lasting performance and appropriate level of service, they need to be preserved and maintained. Highway agencies routinely employ semiautomated and automated image-based methods for network-level pavement-cracking data collection, and there are different types of pavement-cracking data collected by highway agencies for reporting and management purposes. We design a shape-based crack detection approach for pavement health monitoring, which takes advantage of spatial distribution of potential cracks. To achieve this, we first extract Potential Crack Components (PCrCs) from pavement images. Next, we employ polynomial curve to fit all pixels within these components. Finally, we define a Shape Metric (SM) to distinguish crack blocks from background. We experiment the shape-based crack detection approach on different datasets, and compare detection results with an alternate method that is based on Support Vector Machines (SVM) classifier. Experimental results prove that our approach has the capability to produce higher detections and fewer false alarms. Additional research is needed to improve the robustness and accuracy of the developed approach in the presence of anomalies and other surface irregularities.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jie Wan ◽  
Xue Cao ◽  
Kun Yao ◽  
Donghui Yang ◽  
E. Peng ◽  
...  

False information on the Internet is being heralded as serious social harm to our society. To recognize false text information, in this paper, an effective method for mining text features is proposed in the field of false drug advertisements. Firstly, the data of false drug advertisements and real drug advertisements were collected from the official websites to build a database of false and real drug advertisements. Secondly, by performing feature extraction on the text of drug advertisements, this work built a characteristic matrix based on the effective features and assigned positive or negative labels to the feature vector of the matrix according to whether it is a fake medical advertisement or not. Thirdly, this study trained and tested several different classifiers, selected the classification model with the best performance in identifying false drug advertisements, and found the key characteristics that can determine the classification. Finally, the model with the best performance was used to predict new false drug advertisements collected from Sina Weibo. In the case of identifying false drug advertisements, the classification effect of the support vector machine (SVM) classifier established on the feature set after feature selection was the most effective. The findings of this study can provide an effective method for the government to identify and combat false advertisements. This study has a certain reference significance in demonstrating the use of text data mining technology to identify and detect information fraud behavior.


One of the issues that the human body faces is arrhythmia, a condition where the human heartbeat is either irregular, too slow or too fast. One of the ways to diagnose arrhythmia is by using ECG signals, the best diagnostic tool for detection of arrhythmia. This paper describes a deep learning approach to check whether signs of arrhythmia, in a given input signal, are present or not. A batch normalized CNN is used to classify the ECG signals based on the different types of arrhythmia. The model has achieved 96.39% training accuracy and 97% testing accuracy. The ECG signals are classified into five classes namely: Normal beats, Premature Ventricular Contraction (PVC) beats, Right Bundle Branch Block (RBBB) beats, Left Bundle Branch Block (LBBB) beats and Paced beats. A peak detection algorithm with six simple steps is designed to detect R-peaks from the ECG signals. A hardware device is built using Raspberry Pi to acquire ECG signals, which are then sent to the trained CNN for classification. The data-set for training is obtained from the MIT-BIH repository. Keras and Tensorflow libraries are used to design and develop the CNN and an application is designed using ’MEAN’ stack and ’Flask’ based servers.


Sign in / Sign up

Export Citation Format

Share Document