scholarly journals 125 THE ROLE OF ETHYLENE IN THE DEVELOPMENT OF CONSTANT-LIGHT INJURY OF POTATO

HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 446c-446
Author(s):  
K. E. Cushman ◽  
T. W. Tibbitts

Chlorosis and necrotic spotting develop on expanding leaves of particular cultivars of potato (Solanum tuberosum L.) when grown under constant light and temperature conditions. Plantlets of a constant-light sensitive cultivar, Kennebec, were planted into peat:vermiculite and established at 18C for 10 d under a 12 h light: 12 h dark photoperiod. Plants were then exposed to constant light and sprayed with 1 ml of either 0.5 mM silver thiosulfate (STS), an ethylene-action inhibitor, or water (as a control) every 2 days. Specific `target' leaflets, 5-10 mm in length at the beginning of the constant-light period, were harvested on days 5-9 of constant light, during injury development, and placed in bags made of Teflon film for IO-15 minutes to collect ethylene. Ethylene release and necrotic spotting increased as days of constant light increased for both water and STS-treated leaves, though STS-treated leaves produced slightly less ethylene and significantly less necrotic spotting than water-treated leaves. Ethylene release was correlated with extent of necrotic spotting. STS-treated plants exhibited greater dry weight and leaf area then water-treated plants. The results indicate that ethylene is not only produced by injured leaf tissue but, in addition, that ethylene may have a role in the development of constant-light injury symptoms.

HortScience ◽  
1996 ◽  
Vol 31 (7) ◽  
pp. 1164-1166 ◽  
Author(s):  
Kent E. Cushman ◽  
Theodore W. Tibbitts

Chlorosis and necrotic spotting develop on the foliage of particular cultivars of potato (Solanum tuberosum L.) when grown under constant light. `Kennebec', a cultivar severely injured by constant light when propagated from tissue-cultured plantlets, also was injured when plants were propagated from small tuber pieces (≈1 g). However, plants did not develop injury when propagated from large tuber pieces (≈100 g). Plants from large tuber pieces grew more rapidly than plants from small tuber pieces. The role of plant vigor and carbohydrate translocation in controlling injury development is discussed.


1998 ◽  
Vol 123 (2) ◽  
pp. 239-245 ◽  
Author(s):  
Kent E. Chushman ◽  
Theodore W. Tibbitts

The role of tehylene in the development of constant-light injury of potato (Solanum tuberosum L.) and tomato (Lycopersicon esculentum Mill.) was investigated. In one study, silver thiosulfate (STS) was applied to the foliage of four potato cultivars growing under constant light. Leaf area and shoot dry mass of `Kennebec' and `Superior', cultivars normally injured by constant light, were greater (P<0.05) than those of control plantsgiven foliar applications of distilled water. Examination of STS-treated `Kennebec' leaflets revealed significantly less injury (necrotic spotting and reduced starch content) than the water-treated controls. `Norland' and `Denali', cultivars tolerant of constant light, exhibited no differences in growth between treatments. In a second study, injury (necrotic spotting and reduced starch content) was induced in leaflets of `Denali' when exposed to spray applications of 0.5 mmol·L-1 ethephon or air containing 0.5 to 0.8 μL·L-1 ethylene. In a third study, three genotypes of `Ailsa Craig' tomato were grown under constant light. Leaves of the normal `Ailsa Craig' exhibited epinasty, reduced chlorophyll concentration, and reduced starch content. Leaves of a mutant `Ailsa Craig', containing the Never ripe mutation, did not exhibit epinasty but exhibited the same amount of reduced chlorophyll concentration and starch content as normal plants. Leaves of a transgenic `Ailsa Craig', containing an antisense gene of 1-aminocyclopropane 1-carboxylate (ACC) oxidase, were epinastic, but chlorophyll concentration and starch content were greater than in leaves of normal and mutant plants. These results suggest that transgenic plants were more tolerant of constant light than the other genotypes. Evidence from these studies indicates that ethylene, combined with constant light, has an important role in the development of constant-light injury.


1989 ◽  
Vol 67 (2) ◽  
pp. 477-482 ◽  
Author(s):  
L. A. Rupp ◽  
K. W. Mudge ◽  
F. B. Negm

The role of ethylene in mycorrhiza formation and root development on axenically grown seedlings of Pinus mugo Turra var. mugo was examined. Mycorrhizal formation by Laccaria laccata and Pisolithus tinctorius in a defined liquid medium was associated with increased ethylene production. Ethephon (100 μM) stimulated dichotomous branching of roots inoculated with P. tinctorius, but had no effect on those inoculated with L. laccata, or on uninoculated roots. Ethephon had no effect on the percentage of susceptible roots that became mycorrhizal with either fungus. The inhibitor of ethylene action, silver thiosulfate, had no significant effect on mycorrhiza formation by P. tinctorius, but it did show a trend toward decreased mycorrhiza formation by L. laccata when applied at concentrations of 10 μM or higher. Silver thiosulfate at 100 or 500 μM slightly increased dichotomous root branching of seedlings inoculated with either fungus, but these concentrations also caused blackening of root meristems and inhibition of root growth. These results are consistent with the interpretation that endogenous ethylene may influence mycorrhiza formation and associated changes in root morphology.


1966 ◽  
Vol 44 (4) ◽  
pp. 513-518 ◽  
Author(s):  
J. Michael Bristow

Meristematic sections of Pteris cretica var. wimsetti leaves were cultured in various nutrient media. Gibberellic acid (GA), in the presence of sucrose, brought about a significant increase in area compared with controls over a 4-week period. GA also prolonged meristematic activity for up to 8 months, the tissue increasing many times in area and dry weight during this interval. GA significantly increased total cell number, while having no effect on the size of individual epidermal cells. Cycocel ((2-chloroethyl) trimethylammonium chloride) strongly inhibited the growth of leaf sections, but this inhibition was completely reversed by GA. The possible role of gibberellins in leaf morphogenesis is discussed.


2017 ◽  
Vol 7 (4) ◽  
pp. 30-34 ◽  
Author(s):  
O. A. Didur ◽  
Yu. L. Kulbachko ◽  
V. Y. Gasso

<p>The problem of transformation of natural landscapes resulted from the negative technogenic impact is highlighted. It is shown that mining enterprises are powerful anthropo-technical sources of organic and inorganic toxicants entering the environment. Their wastes pollute all components of the ecosystems and negatively influence human health by increasing a risk of disease. The nature of the accumulation of trace elements (Fe, Cu, Zn, Ni, Cd, and Pb) by invertebrate animals of various functional groups under conditions of anthropo-technogenic pressure was studied. The sample plots were located on self-overgrowing sites with ruderal vegetation located in the immediate vicinity of the Mangan ore-dressing and processing enterprise (Dnipropetrovsk region). It is quite naturally that among the studied biogenic microelements (Fe, Cu, Zn and Ni), the phyto-, zoo-, and saprophages in the investigated zone of technogenic pollution most actively accumulate Fe:<em> </em>22758, 17516 and 18884 mg/kg dry weight on average, respectively. There are significant differences (p ≤ 0.05) in the content of studied microelements between saprophages and phytophages. The saprophages accumulate such trace metals as Mn, Cu, Zn and Cd in high quantities, but Ni and Pb – in smaller ones. The saprophagous functional group of invertebrates is an active agent of detritogenesis, in the conditions of modern nature management it acts as a powerful element of ecosystem engineering (habitat transformation), the main ecological role of which is to modify the habitat of other soil biota. In addition, the saprophages fulfil their concentrating geochemical function. They actively participate in the most important soil biochemical process: the formation of humus, the migration of microelements along trophic chains, the biological cycle in general, and provide such supporting ecosystem services as increasing soil fertility and nutrient cycling.</p>


2021 ◽  
Vol 13 (9) ◽  
pp. 5074
Author(s):  
Urooj Kanwal ◽  
Muhammad Ibrahim ◽  
Farhat Abbas ◽  
Muhammad Yamin ◽  
Fariha Jabeen ◽  
...  

Phytoremediation is a cost-effective and environmentally friendly approach that can be used for the remediation of metals in polluted soil. This study used a hedge plant–calico (Alternanthera bettzickiana (Regel) G. Nicholson) to determine the role of citric acid in lead (Pb) phytoremediation by exposing it to different concentrations of Pb (0, 200, 500, and 1000 mg kg−1) as well as in a combination with citric acid concentration (0, 250, 500 µM). The analysis of variance was applied on results for significant effects of the independent variables on the dependent variables using SPSS (ver10). According to the results, maximum Pb concentration was measured in the upper parts of the plant. An increase in dry weight biomass, plant growth parameters, and photosynthetic contents was observed with the increase of Pb application (200 mg kg−1) in soil while a reduced growth was experienced at higher Pb concentration (1000 mg kg−1). The antioxidant enzymatic activities like superoxide dismutase (SOD) and peroxidase (POD) were enhanced under lower Pb concentration (200, 500 mg kg−1), whereas the reduction occurred at greater metal concentration Pb (1000 mg kg−1). There was a usual reduction in electrolyte leakage (EL) at lower Pb concentration (200, 500 mg kg−1), whereas EL increased at maximum Pb concentration (1000 mg kg−1). We concluded that this hedge plant, A. Bettzickiana, has the greater ability to remediate polluted soils aided with citric acid application.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shugang Zhao ◽  
Hongxia Wang ◽  
Kai Liu ◽  
Linqing Li ◽  
Jinbing Yang ◽  
...  

Abstract Background Tissue culture is an effective method for the rapid breeding of seedlings and improving production efficiency, but explant browning is a key limiting factor of walnut tissue culture. Specifically, the polymerization of PPO-derived quinones that cause explant browning of walnut is not well understood. This study investigated explants of ‘Zanmei’ walnut shoot apices cultured in agar (A) or vermiculite (V) media, and the survival percentage, changes in phenolic content, POD and PPO activity, and JrPPO expression in explants were studied to determine the role of PPO in the browning of walnut explants. Results The results showed that the V media greatly reduced the death rate of explants, and 89.9 and 38.7% of the explants cultured in V media and A media survived, respectively. Compared with that of explants at 0 h, the PPO of explants cultured in A was highly active throughout the culture, but activity in those cultured in V remained low. The phenolic level of explants cultured in A increased significantly at 72 h but subsequently declined, and the content in the explants cultured in V increased to a high level only at 144 h. The POD in explants cultured in V showed high activity that did not cause browning. Gene expression assays showed that the expression of JrPPO1 was downregulated in explants cultured in both A and V. However, the expression of JrPPO2 was upregulated in explants cultured in A throughout the culture and upregulated in V at 144 h. JrPPO expression analyses in different tissues showed that JrPPO1 was highly expressed in stems, young leaves, mature leaves, catkins, pistils, and hulls, and JrPPO2 was highly expressed in mature leaves and pistils. Moreover, browning assays showed that both explants in A and leaf tissue exhibited high JrPPO2 activity. Conclusion The rapid increase in phenolic content caused the browning and death of explants. V media delayed the rapid accumulation of phenolic compounds in walnut explants in the short term, which significantly decreased explants mortality. The results suggest that JrPPO2 plays a key role in the oxidation of phenols in explants after branch injury.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 788
Author(s):  
Shaban R. M. Sayed ◽  
Shaimaa A. M. Abdelmohsen ◽  
Hani M. A. Abdelzaher ◽  
Mohammed A. Elnaghy ◽  
Ashraf A. Mostafa ◽  
...  

The role of Pythium oligandrum as a biocontrol agent against Pythium aphanidermatum was investigated to avoid the harmful impacts of fungicides. Three isolates of P. oligandrum (MS15, MS19, and MS31) were assessed facing the plant pathogenic P. aphanidermatum the causal agent of Glycine max damping-off. The tested Pythium species were recognized according to their cultural and microscopic characterizations. The identification was confirmed through sequencing of rDNA-ITS regions including the 5.8 S rDNA. The biocontrol agent, P. oligandrum, isolates decreased the mycelial growth of the pathogenic P. aphanidermatum with 71.3%, 67.1%, and 68.7% through mycoparasitism on CMA plates. While the half-strength millipore sterilized filtrates of P. oligandrum isolates degrade the pathogenic mycelial linear growth by 34.1%, 32.5%, and 31.7%, and reduce the mycelial dry weight of the pathogenic P. aphanidermatum by 40.1%, 37.4%, and 36.8%, respectively. Scanning electron microscopy (SEM) of the most effective antagonistic P. oligandrum isolate (MS15) interaction showed coiling, haustorial parts of P. oligandrum to P. aphanidermatum hyphae. Furthermore, P. oligandrum isolates were proven to enhance the germination of Glycine max seedling to 93.3% in damping-off infection using agar pots and promote germination of up to 80% during soil pot assay. On the other hand, P. oligandrum isolates increase the shoot, root lengths, and the number of lateral roots.


1994 ◽  
Vol 34 (8) ◽  
pp. 1177 ◽  
Author(s):  
SR Dullahide ◽  
GR Stirling ◽  
A Nikulin ◽  
AM Stirling

Investigations of apple replant failure in the Granite Belt suggested that the problem had a complex etiology. Soil fertility was an important factor because apple seedlings grew best in replant soils with high levels of nitrogen, phosphorus, and potassium. Consistent improvements in the growth of apple seedlings were obtained when typical orchard soils were treated with fenamiphos, confirming that lesion nematode was also an important component of the disease complex. Pratylenchus penetrans had been recognised as a pathogen of apples, and pathogenicity tests showed that P. jordanensis, another species widely distributed in the Granite Belt, had similar effects. Growth responses of apple seedlings were greater when soil was pasteurised than when it was treated with fenamiphos, suggesting that root pathogens other than nematodes were involved in apple replant failure. However, the primary cause probably differed between orchards because soils did not respond in the same manner to pasteurisation and nematicide treatments. Pathogenicity tests with 14 bacteria associated with apple roots showed no effect on the growth of apple seedlings. However, Fusarium tricinctum, Cylindrocarpon destructans, and Pythium sp. were implicated in the problem because they were consistently recovered from discoloured roots. In a factorial experiment involving nematodes and fungi in pots, P. jordanensis, P. penetrans, E. tricinctum, and C. destructans reduced the dry weight of apple roots but there was no interaction between nematodes and fungi.


HortScience ◽  
2017 ◽  
Vol 52 (5) ◽  
pp. 764-769 ◽  
Author(s):  
Qiang Zhu ◽  
Monica Ozores-Hampton ◽  
Yuncong Li ◽  
Kelly Morgan ◽  
Guodong Liu ◽  
...  

Florida produces the most vegetables in the United States during the winter season with favorable weather conditions. However, vegetables grown on calcareous soils in Florida have no potassium (K) fertilizer recommendation. The objective of this study was to evaluate the effects of K rates on leaf tissue K concentration (LTKC), plant biomass, fruit yield, and postharvest quality of tomatoes (Solanum lycopersicum L.) grown on a calcareous soil. The experiment was conducted during the winter seasons of 2014 and 2015 in Homestead, FL. Potassium fertilizers were applied at rates of 0, 56, 93, 149, 186, and 223 kg·ha−1 of K and divided into preplant dry fertilizer and fertigation during the season. No deficiency of LTKC was found at 30 days after transplanting (DAT) in both years. Potassium rates lower than 149 kg·ha−1 resulted in deficient LTKC at 95 DAT in 2014. No significant responses to K rates were observed in plant (leaf, stem, and root combined) dry weight biomass at all the sampling dates in both years. However, at 95 DAT, fruit dry weight biomass increased with increasing K rates to 130 and 147 kg·ha−1, reaching a plateau thereafter indicated by the linear-plateau models in 2014 and 2015, respectively. Predicted from quadratic and linear-plateau models, K rates of 173 and 178 kg·ha−1 were considered as the optimum rates for total season marketable yields in 2014 and 2015, respectively. Postharvest qualities, including fruit firmness, pH, and total soluble solids (TSS) content, were not significantly affected by K rates in both years. Overall, K rate of 178 kg·ha−1 was sufficient to grow tomato during the winter season in calcareous soils with 78 to 82 mg·kg−1 of ammonium bicarbonate-diethylenetriaminepentaacetic acid (AB-DTPA)-extracted K in Florida.


Sign in / Sign up

Export Citation Format

Share Document