scholarly journals E-2-Hexenal Can Both Stimulate and Inhibit Botrytis Growth in Vitro and on Strawberry Fruit in Vivo

HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 505E-506
Author(s):  
Elazar Fallik ◽  
Douglas D. Archbold ◽  
Thomas R. Hamilton-Kemp

Some plant-derived natural volatile compounds exhibit antifungal properties and may offer a tremendous opportunity to control the causes of postharvest spoilage without affecting fresh produce quality or leaving a residue on the produce. E-2-hexenal has shown significant potential for use as a fumigant for controlling Botrytis cinerea in prior studies. In in vitro studies on the mode of action of E-2-hexenal, mycelial growth and percent spore germination were inversely proportional to concentrations of the compound. Spore germination was found to be more susceptible to the compound then mycelial growth. Much higher concentrations of E-2-hexenal were required to inhibit mycelial growth than spore germination. Lower concentrations of the compound significantly stimulated mycelial growth, especially when the volatile was added 2 days following inoculation. Light microscopy analysis revealed that a high concentration of the volatile damaged fungal cell wall and membranes. Treatment with a high vapor phase level of E-2-hexenal during postharvest storage of strawberry fruit at 2°C prevented botrytis development in a subsequent storage period at 15°C. However, treatment with a low vapor phase level enhanced botrytis development. The implications of these results with respect to the practical use of E-2-hexenal and other natural volatile compounds will be discussed.

1998 ◽  
Vol 123 (5) ◽  
pp. 875-881 ◽  
Author(s):  
Elazar Fallik ◽  
Douglas D. Archbold ◽  
Thomas R. Hamilton-Kemp ◽  
Ann M. Clements ◽  
Randy W. Collins ◽  
...  

Some plant-derived natural volatile compounds exhibit antifungal properties and may offer an opportunity to control the causes of postharvest spoilage without affecting quality of, or leaving a residue on, fresh produce. The natural wound volatile (E)-2-hexenal has exhibited significant antifungal activity in earlier studies, but effects on spore germination and mycelial growth have not been separated, nor has the inhibitory mode of action been determined. To determine the efficacy of (E)-2-hexenal for control of Botrytis cinerea Pers. ex Fr. spore germination and mycelial growth, and to examine the mode of action, in vitro and in vivo studies were performed. Under in vitro bioassay conditions, spore germination was more sensitive to the compound than was mycelial growth. Vapor from 10.3 μmol of (E)-2-hexenal in a 120-mL petri dish completely inhibited spore germination. However, 85.6 μmol of (E)-2-hexenal was required to completely inhibit mycelial growth. Lower concentrations of the compound (5.4 and 10.3 μmol) significantly stimulated mycelial growth, especially when the volatile was added 2 days following inoculation. Mycelial growth did not occur as long as the vapor-phase concentration was 0.48 μmol·L-1 or greater. Light microscopy analysis indicated that a high concentration of volatile compound dehydrated fungal hyphae and disrupted their cell walls and membranes. Exposure of B. cinerea-inoculated and non-inoculated strawberry (Fragaria ×ananassa Duch.) fruit in 1.1-L low-density polyethylene film-wrapped containers to vapor of (E)-2-hexenal at 85.6 or 856 μmol (10 or 100 mL, respectively) per container for durations of 1, 4, or 7 days during 7 days of storage at 2 °C promoted the incidence of B. cinerea during subsequent shelf storage at 20 to 22 °C. Loss of fruit fresh mass and fruit firmness during storage at 22 °C was increased by (E)-2-hexenal treatment, but fruit total soluble solids, pH, titratable acidity, and color (L, C, and H values) were not affected. Thus, maintenance of a high vapor-phasel level of (E)-hexenal, perhaps >0.48 μmol·L-1, may be necessary to inhibit mycelial growth and avoid enhancing postharvest mold problems, while significantly higher levels may be necessary to completely eliminate the pathogen.


2020 ◽  
Vol 12 (10) ◽  
pp. 301
Author(s):  
Claudineia B. Rodrigues ◽  
Renata F. Barabasz ◽  
Rayssa H. da Silva ◽  
Monica C. Sustakowski ◽  
Odair J. Kuhn ◽  
...  

One of the factors that cause the greatest loss of fruit in post-harvest are diseases, especially rotting such as anthracnose. Therefore, this work aimed to test the potential of the yeasts Candida albicans, Pichia guilliermondii, Rhodotorula glutinis, Saccharomyces cerevisiae, Cryptococcus laurentii and Zygoascus hellenicus in the control of Colletotrichum musae in bananas in post-harvest period. To test the potential of these yeasts, the effect of volatile and non-volatile compounds, culture pairing and spore germination of the fungus C. musae in vitro was evaluated. In post-harvest fruits, the area below the mycelial growth curve (AACCM) and the area below the disease progress curve (AACPD) were evaluated. The yeasts C. albicans, R. glutinis, S. cerevisiae and P. guilliermondii produced volatile compounds with antifungal action, reducing the development of the fungus in vitro. The yeast R. glutinis was shown to be more efficient in reducing mycelial growth in vitro of the fungus through the production of non-volatile compounds. The yeasts C. albicans and P. guilliermondii showed the presence of an inhibition halo. All yeasts induced the germination of C. musae conidia and were not efficient in controlling anthracnose in vivo.


Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5335
Author(s):  
Huochun Ye ◽  
Qin Wang ◽  
Fadi Zhu ◽  
Gang Feng ◽  
Chao Yan ◽  
...  

We investigated alpha-mangostin (α-mangostin, α-MG), a xanthone natural product extracted from the pericarp of mangosteen (Garcinia mangostana), for its antifungal activities and possible mechanism against Colletotrichum gloeosporioides, which causes mango anthracnose. The results demonstrated that α-MG had a relatively high in vitro inhibitory activity against C. gloeosporioides among 20 plant pathogenic fungi. The median effective concentration (EC50) values of α-MG against mycelial growth were nearly 10 times higher than those of spore germination inhibition for both strains of C. gloeosporioides, the carbendazim-sensitive (CBD-s) and carbendazim-resistant (CBD-r). The results suggested that α-MG exhibited a better inhibitory effect on spore germination than on the mycelial growth of C. gloeosporioides. Further investigation indicated that the protective effect could be superior to the therapeutic effect for mango leaves for scab development. The morphological observations of mycelium showed that α-MG caused the accumulation of dense bodies. Ultrastructural observation further revealed that α-MG caused a decrease in the quantity and shape of the swelling of mitochondria in the mycelium cells of C. gloeosporioides. In addition, bioassays disclosed that the inhibitory activity of α-MG on spore germination was reduced by adding exogenous adenosine triphosphate (ATP). These results suggested that the mode of action of α-MG could be involved in the destruction of mitochondrial energy metabolism. The current study supports α-MG as a natural antifungal agent in crop protection.


2008 ◽  
Vol 98 (4) ◽  
pp. 443-450 ◽  
Author(s):  
G. A. Bardas ◽  
C. K. Myresiotis ◽  
G. S. Karaoglanidis

The fitness of anilinopyrimidine-resistant isolates of Botrytis cinerea compared with that of sensitive isolates, collected from vegetable crops in Greece during 2005, was investigated. Stability of resistance to anilinopyrimidine fungicides was determined after consecutive transfers of the fungal isolates on fungicide-free potato dextrose agar for 16 culture cycles or on fungicide-untreated cucumber seedlings for eight disease cycles. Results showed that after the consecutive transfers of the isolates either in vitro or in vivo sensitivity to cyprodinil was not changed significantly compared to the initial sensitivity in all the isolates tested, suggesting a stable genetically controlled trait. Fitness parameters measured were mycelial growth, spore production in vitro, osmotic sensitivity, virulence, spore production in vivo, percentage of spore germination, and competitive ability of the resistant isolates in four pairs with sensitive isolates both on artificial nutrient medium or on cucumber seedling plants. The measurements of the fitness components in individual isolates showed high variability within both sensitivity groups in all, except virulence, fitness components tested. As a group, resistant isolates showed significantly lower (P < 0.05) mycelial growth and virulence, while they were more osmotically sensitive than the sensitive isolates. In addition the resistant isolates showed higher (P < 0.05) spore production in vivo but there was no difference (P > 0.05) between the two sensitivity groups in spore production in vitro and in the percentage of spore germination. However, the correlation to test if there is any relationship between the values of each fitness component tested and the level of cyprodinil sensitivity of each isolate was for all, except the spore production in vivo, fitness components not significant (P > 0.05). This absence of significant correlation coefficient values suggests that the development of resistance to anilinopyrimidine fungicides did not affect the fitness of the resistant isolates. Competition of the resistant versus sensitive isolates was isolates-dependent, since in two of the isolate pairs the resistance frequency decreased significantly after five culture or disease cycles, while in the remaining two pairs resistance frequency increased significantly after five disease cycles or remained stable for one pair after five culture cycles on artificial nutrient media.


1974 ◽  
Vol 32 (02/03) ◽  
pp. 405-416 ◽  
Author(s):  
M. R Hardeman ◽  
Carina J L. Heynens

SummaryStorage experiments were performed at 4°, 25° and 37° C with platelet-rich plasma under sterile conditions. In some experiments also the effect of storing platelets at 4° C in whole blood was investigated.Before, during and after three days of storage, the platelets were tested at 37° C for their serotonin uptake and response to hypotonic shock. In addition some glycolytic intermediates were determined.A fair correlation was noticed between the serotonin uptake and hypotonic shock experiments. Both parameters were best maintained at 25° C. Also platelet counting, performed after the storage period, indicated 25° C as the best storage temperature. Determination of glycolytic intermediates did not justify any conclusion regarding the optimal storage temperature. Of the various anticoagulants studied, ACD and heparin gave the best results as to the serotonin uptake and hypotonic shock response, either with fresh or stored platelets. The use of EDTA resulted in the lowest activity, especially after storage.The results of these storage experiments in vitro, correspond well with those in vivo reported in the literature.


2020 ◽  
Vol 55 (1) ◽  
pp. 27-34
Author(s):  
G. Zadehdabagh ◽  
K. Karimi ◽  
M. Rezabaigi ◽  
F. Ajamgard

The northern of Khuzestan province in Iran is mainly considered as one of the major areas of miniature rose production. Blossom blight caused by Botrytis cinerea has recently become a serious limiting factor in rose production in pre and post-harvest. In current study, an attempt was made to evaluate the inhibitory potential of some local Trichoderma spp. strains against B. cinerea under in vitro and in vivo conditions. The in vitro results showed that all Trichoderma spp. strains were significantly able to reduce the mycelial growth of the pathogen in dual culture, volatile and non-volatile compounds tests compared with control, with superiority of T. atroviride Tsafi than others. Under in vivo condition, the selected strain of T. atroviride Tsafi had much better performance than T. harzianum IRAN 523C in reduction of disease severity compared with the untreated control. Overall, the findings of this study showed that the application of Trichoderma-based biocontrol agents such as T. atroviride Tsafi can be effective to protect cut rose flowers against blossom blight.


Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 335
Author(s):  
Silvia Tampucci ◽  
Antonella Castagna ◽  
Daniela Monti ◽  
Clementina Manera ◽  
Giuseppe Saccomanni ◽  
...  

Chitosan is receiving increasing attention from the food industry for being a biodegradable, non-toxic, antimicrobial biopolymer able to extend the shelf life of, and preserve the quality of, fresh food. However, few studies have investigated the ability of chitosan-based coatings to allow the diffusion of bioactive compounds into the food matrix to improve its nutraceutical quality. This research is aimed at testing whether a hydrophilic molecule (tyrosol) could diffuse from the chitosan-tyrosol coating and cross the tomato peel. To this end, in vitro permeation tests using excised tomato peel and an in vivo application of chitosan-tyrosol coating on tomato fruit, followed by tyrosol quantification in intact fruit, peel and flesh during a seven-day storage at room temperature, were performed. Both approaches demonstrated the ability of tyrosol to permeate across the fruit peel. Along with a decreased tyrosol content in the peel, its concentration within the flesh was increased, indicating an active transfer of tyrosol into this tissue. This finding, together with the maintenance of constant tyrosol levels during the seven-day storage period, is very promising for the use of chitosan formulations to produce functional tomato fruit.


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1382
Author(s):  
Mina Martini ◽  
Iolanda Altomonte ◽  
Domenico Tricò ◽  
Riccardo Lapenta ◽  
Federica Salari

The increase of knowledge on the composition of donkey milk has revealed marked similarities to human milk, which led to a growing number of investigations focused on testing the potential effects of donkey milk in vitro and in vivo. This paper examines the scientific evidence regarding the beneficial effects of donkey milk on human health. Most clinical studies report a tolerability of donkey milk in 82.6–98.5% of infants with cow milk protein allergies. The average protein content of donkey milk is about 18 g/L. Caseins, which are main allergenic components of milk, are less represented compared to cow milk (56% of the total protein in donkey vs. 80% in cow milk). Donkey milk is well accepted by children due to its high concentration of lactose (about 60 g/L). Immunomodulatory properties have been reported in one study in humans and in several animal models. Donkey milk also seems to modulate the intestinal microbiota, enhance antioxidant defense mechanisms and detoxifying enzymes activities, reduce hyperglycemia and normalize dyslipidemia. Donkey milk has lower calorie and fat content compared with other milks used in human nutrition (fat ranges from 0.20% to 1.7%) and a more favourable fatty acid profile, being low in saturated fatty acids (3.02 g/L) and high in alpha-linolenic acid (about 7.25 g/100 g of fat). Until now, the beneficial properties of donkey milk have been mostly related to whey proteins, among which β-lactoglobulin is the most represented (6.06 g/L), followed by α-lactalbumin (about 2 g/L) and lysozyme (1.07 g/L). So far, the health functionality of donkey milk has been tested almost exclusively on animal models. Furthermore, in vitro studies have described inhibitory action against bacteria, viruses, and fungi. From the literature review emerges the need for new randomized clinical trials on humans to provide stronger evidence of the potential beneficial health effects of donkey milk, which could lead to new applications as an adjuvant in the treatment of cardiometabolic diseases, malnutrition, and aging.


2021 ◽  
Vol 7 (3) ◽  
pp. 163 ◽  
Author(s):  
Sabelle Jallow ◽  
Nelesh P. Govender

Ibrexafungerp (formerly SCY-078 or MK-3118) is a first-in-class triterpenoid antifungal or “fungerp” that inhibits biosynthesis of β-(1,3)-D-glucan in the fungal cell wall, a mechanism of action similar to that of echinocandins. Distinguishing characteristics of ibrexafungerp include oral bioavailability, a favourable safety profile, few drug–drug interactions, good tissue penetration, increased activity at low pH and activity against multi-drug resistant isolates including C. auris and C. glabrata. In vitro data has demonstrated broad and potent activity against Candida and Aspergillus species. Importantly, ibrexafungerp also has potent activity against azole-resistant isolates, including biofilm-forming Candida spp., and echinocandin-resistant isolates. It also has activity against the asci form of Pneumocystis spp., and other pathogenic fungi including some non-Candida yeasts and non-Aspergillus moulds. In vivo data have shown IBX to be effective for treatment of candidiasis and aspergillosis. Ibrexafungerp is effective for the treatment of acute vulvovaginal candidiasis in completed phase 3 clinical trials.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 209
Author(s):  
Nadia Lyousfi ◽  
Rachid Lahlali ◽  
Chaimaa Letrib ◽  
Zineb Belabess ◽  
Rachida Ouaabou ◽  
...  

The main objective of this study was to evaluate the ability of both antagonistic bacteria Bacillus amyloliquefaciens (SF14) and Alcaligenes faecalis (ACBC1) used in combination with salicylic acid (SA) to effectively control brown rot disease caused by Monilinia fructigena. Four concentrations of salicylic acid (0.5%, 2%, 3.5%, and 5%) were tested under in vitro and in vivo conditions. Furthermore, the impact of biological treatments on nectarine fruit parameters’ quality, in particular, weight loss, titratable acidity, and soluble solids content, was evaluated. Regardless of the bacterium, the results indicated that all combined treatments displayed a strong inhibitory effect on the mycelial growth of M. fructigena and disease severity. Interestingly, all SA concentrations significantly improved the biocontrol activity of each antagonist. The mycelial growth inhibition rate ranged from 9.79% to 88.02% with the highest reduction rate recorded for bacterial antagonists in combination with SA at both concentrations of 0.5% and 3.5%. The in vivo results confirmed the in vitro results with a disease severity varying from 0.00% to 51.91%. A significant biocontrol improvement was obtained with both antagonistic bacteria when used in combination with SA at concentrations of 0.5% and 2%. The lowest disease severity observed with ACBC1 compared with SF14 is likely due to a rapid adaptation and increase of antagonistic bacteria population in wounded sites. The impact of all biological treatments revealed moderate significant changes in the fruit quality parameters with weight loss for several treatments. These results suggest that the improved disease control of both antagonistic bacteria was more likely directly linked to both the inhibitory effects of SA on pathogen growth and induced fruit resistance.


Sign in / Sign up

Export Citation Format

Share Document