scholarly journals Tillage, Cover Cropping, and Nitrogen Fertilization Influence Tomato Yield and Nitrogen Uptake

HortScience ◽  
2000 ◽  
Vol 35 (2) ◽  
pp. 217-221 ◽  
Author(s):  
Upendra M. Sainju ◽  
Bharat P. Singh ◽  
Syed Rahman ◽  
V.R. Reddy

Management practices can influence tomato (Lycopersicon esculentum Mill.) yield and N uptake. The effects of tillage (no-till, chisel plowing, and moldboard plowing), cover crop [hairy vetch (Vicia villosa Roth) vs. none], and N fertilization (0, 90, and 180 kg·ha-1 N) on transplanted tomato yield and N uptake were studied in the field from May to August in 1996 and 1997 on a Norfolk sandy loam (fine-loamy, siliceous, thermic, Typic Kandiudults) in central Georgia. Plowing increased fresh and dry fruit yield and N uptake in 1996 and N fertilization increased yield and N uptake in 1996 and 1997. Plowing also increased stem and leaf dry weights and N uptake from 40 to 118 days after transplanting (DAT) in 1996. Fertilization increased stem weight and N uptake with or without hairy vetch from 54 to 68 DAT in 1996 and stem and leaf weights and N uptake at 68 DAT in 1997. Both hairy vetch and N fertilization increased leaf N concentration in 1997. Recovery of N by the plants was lower with hairy vetch than with N fertilization, but was similar to or greater with 90 than with 180 kg·ha-1 N. We conclude that reduced tillage, such as chisel plowing, with 90 kg·ha-1 N can sustain tomato yield and N uptake, with reduced potentials of sediments and/or NO3 contamination in surface and groundwater.

HortScience ◽  
2000 ◽  
Vol 35 (7) ◽  
pp. 1258-1262 ◽  
Author(s):  
Sidat Yaffa ◽  
Bharat P. Singh ◽  
Upendra M. Sainju ◽  
K.C. Reddy

Sustainable practices are needed in vegetable production to maintain yield and to reduce the potential for soil erosion and N leaching. We examined the effects of tillage [no-till (NT), chisel plowing (CP), and moldboard plowing (MP)], cover cropping [hairy vetch (Vicia villosa Roth) vs. winter weeds], N fertilization (0, 90, and 180 kg·ha-1 N), and date of sampling on tomato (Lycopersicon esculentum Mill.) yield, N uptake, and soil inorganic N in a Norfolk sandy loam in Fort Valley, Ga. for 2 years. Yield was greater with CP and MP than with NT in 1996 and was greater with 90 and 180 than with 0 kg·ha-1 N in 1996 and 1997. Similarly, aboveground tomato biomass (dry weight of stems + leaves + fruits) and N uptake were greater with CP and MP than with NT from 40 to 118 days after transplanting (DAT) in 1996; greater with hairy vetch than with winter weeds at 82 DAT in 1997; and greater with 90 or 180 than with 0 kg·ha-1 N at 97 DAT in 1996 and at 82 DAT in 1997. Soil inorganic N was greater with NT or CP than with MP at 0- to 10-cm depth at 0 and 30 DAT in 1996; greater with hairy vetch than with winter weeds at 0- to 10-cm and at 10- to 30-cm at 0 DAT in 1996 and 1997, respectively; and greater with 90 or 180 than with 0 kg·ha-1 N from 30 to 116 DAT in 1996 and 1997. Levels of soil inorganic N and tomato N uptake indicated that N release from cover crop residues was synchronized with N need by tomato, and that N fertilization should be done within 8 weeks of transplanting. Similar tomato yield, biomass, and N uptake with CP vs. MP and with 90 vs. 180 kg·ha-1 N suggests that minimum tillage, such as CP, and 90 kg·ha-1 N can better sustain tomato yield and reduce potentials for soil erosion and N leaching than can conventional tillage, such as MP, and 180 kg·ha-1 N, respectively. Because of increased vegetative cover in the winter, followed by increased mulch and soil N in the summer, hairy vetch can reduce the potential for soil erosion and the amount of N fertilization required for tomato better than can winter weeds.


HortScience ◽  
2000 ◽  
Vol 35 (1) ◽  
pp. 78-82 ◽  
Author(s):  
Upendra M. Sainju ◽  
Bharat P. Singh ◽  
Syed Rahman ◽  
V.R. Reddy

The influence of tillage [no-till (NT) vs. moldboard plowing (MP)], cover crop [hairy vetch (Vicia villosa Roth) (HV) vs. no hairy vetch (NHV)], and N fertilization (0 and 180 kg·ha–1 N) on root distribution and growth rate of tomato (Lycopersicon esculentum Mill.) transplants was examined in the field from May to August in 1996 and 1997. Experiments were conducted on a Norfolk sandy loam (fine-loamy, siliceous, thermic, Typic Kandiudults) in central Georgia. Root growth was estimated every 1 to 2 weeks with minirhizotron tubes installed in the plot. Roots were well distributed at soil depths between 1 and 58.5 cm and a maximum root count of 3.14 roots/cm2 soil profile area was found at 19.5-cm depth with MP and no N fertilization in 1996. In general, NT with HV or with 0 kg·ha–1 N increased root proliferation at a depth of 6.5 to 19.5 cm, while MP with 180 kg·ha–1 N increased root proliferation at greater depths. Total root count between 1 and 58.5 cm was not influenced by management practices, but increased linearly at rates of 0.35 roots/cm2 per day from 20 June to 11 July 1996, and 0.03 roots/cm2 per day from 16 May to 5 Aug. 1997. Root growth thereafter was minimal. Because of the higher temperature during early development, growth rate and number of roots were greater in 1996 than in 1997. Superior moisture conservation, accompanied by increased N availability, may have increased root proliferation in the surface soil in NT with HV or with 0 kg·ha–1 N compared with NT with NHV or with 180 kg·ha–1 N, and MP with or without HV or with or without N fertilization. Root growth, however, was not related with aboveground tomato yield.


HortScience ◽  
2001 ◽  
Vol 36 (1) ◽  
pp. 90-93 ◽  
Author(s):  
Upendra M. Sainju ◽  
Syed Rahman ◽  
Bharat P. Singh

The ability of hairy vetch (Vicia villosa Roth) residue (100 g/plant) to supply N and to increase yields of tomato (Lycopersicon esculentum Mill.) was compared with that of N fertilization (0, 4.1, and 8.2 g/plant N) in a medium containing a mixture of 3 perlite: 1 vermiculite in a greenhouse and a lathhouse. Hairy vetch residue did not interact with N fertilization in affecting tomato yield and medium N concentration. In the greenhouse, leaf dry weight, leaf and stem N uptake, total (fruit + stem + leaf + root) dry weight and N uptake of tomato, and NH4+ and inorganic N concentrations in the medium at transplanting were significantly greater with than without residue. In the lathhouse, fruit number, fresh and dry yields and N uptake, leaf, stem, and root dry weights and N uptake, root length, total dry weight and N uptake of tomato, and NH4+, NO3-, and inorganic N concentrations in the medium at transplanting, and inorganic N at harvest were greater with than without residue. Nitrogen fertilization increased fruit number, fresh and dry yields and N uptake, stem, leaf, and root dry weights and N uptake, root length, and total dry weight and N uptake. The residue was as effective in increasing fresh fruit yield, total dry weight, and N uptake as was 4.4 to 7.9 g/plant of N fertilizer. Tomato yield and N uptake per unit amount of N supplied was greater for the residue than for N fertilization, suggesting that hairy vetch residue can be effectively used as N fertilizer for tomato production.


Agronomy ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 102 ◽  
Author(s):  
Ximena Huérfano ◽  
Sergio Menéndez ◽  
Matha-Marina Bolaños-Benavides ◽  
Carmen González-Murua ◽  
José-María Estavillo

Grasslands are subject to a wide range of land management practices that influence the exchange of the three main agricultural greenhouse gases (GHGs) that are related to agriculture: carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4). Improving nitrogen fertilization management practices through the use of nitrification inhibitors (NIs) can reduce GHGs emissions. We conducted a field experiment at the Colombian Agricultural Research Corporation with four fertilization treatments: urea (typical fertilizer used in this region), ammonium sulfate nitrate (ASN), ASN plus the NI 3,4-dimethylpyrazole phosphate (ASN+DMPP), and an unfertilized control. The highest grassland yields (1956 and 2057 kg DM ha−1, respectively) and apparent fertilizer nitrogen recoveries (34% and 33%, respectively) were generated by the conventional urea fertilizer and ASN+DMPP. Furthermore, the use of ASN+DMPP reduced the N2O emissions that were related to N fertilization to the level of the unfertilized treatment (ca. 1.5 g N2O-N ha−1), with a significant reduction of N-yield-scaled N2O emissions (ca. 20 g N2O-N kg N uptake−1). These results support the application of DMPP as an alternative strategy to increase grassland yield while simultaneously reducing the environmental impact of N fertilization.


2000 ◽  
Vol 80 (3) ◽  
pp. 523-532 ◽  
Author(s):  
U. M. Sainju ◽  
B. P. Singh ◽  
W. F. Whitehead

Cover crops can influence soil properties and crop yield. We examined the influence of legume [hairy vetch (Vicia villosa Roth) and crimson clover (Trifolium incarnatum L.)] and nonlegume [rye (Secale cereale L.)] cover crops and N fertilization (0, 90, and 180 kg N ha−1) on the short- and long-term effects on soil C and N and tomato yield and N uptake. We measured organic C and N (long-term effects), potential C and N mineralization (PCM and PNM) and inorganic N (short-term effects) periodically on a Greenville fine sandy loam (fine-loamy, kaolinitic, thermic, Rhodic Kandiudults) planted with tomato (Lycopersicum esculentum Mill) from April to August in 1996 and 1997 in Georgia USA. Soil C and N concentrations increased early in the growing season with cover crop residue incorporation, but decreased as the residue decomposed. Rye increased organic N and maintained greater levels of organic C and PCM after 3 yr than other treatments. In contrast, hairy vetch and crimson clover increased PNM and inorganic N soon after residue incorporation into the soil and produced tomato yield and N uptake similar to that produced by 90 and 180 kg N ha–1. Nitrogen fertilization increased PNM and inorganic N after split application and tomato yield and N uptake but decreased organic C and N and PCM compared with rye. Compared with 0 kg N ha–1, nonlegume cover crops, such as rye can increase organic C and N and PCM but legume cover crops, such as hairy vetch and crimson clover, can enrich soil N and produce tomato yield and N uptake similar to that produced by 90 and 180 kg N ha−1. Key words: Cover crops, nitrogen fertilization, soil carbon, soil nitrogen, tomato yield


2018 ◽  
Vol 21 (1) ◽  
pp. 77-89
Author(s):  
MKA Bhuiyan ◽  
AJ Mridha ◽  
S Singh ◽  
AK Srivastava ◽  
US Singh ◽  
...  

The study was conducted in two locations of coastal districts Patuakhali and Satkhira during 2012 and 2013 T. Aman season. Stress tolerant rice varieties along with nitrogen application using prilled urea (PU), leaf color chart (LCC), urea super granule (USG), and rice crop manager (RCM) software based nitrogen (N) dose were examined. The objectives of the study were to identify the response of saline tolerant varieties to N fertilization on grain yield and profitability. Among the tested varieties, grain yield of BRRI dhan40, BRRI dhan41 and BRRI dhan54 were higher compared to BRRI dhan52 and BRRI dhan53 irrespective of location. There were no significant difference among the better performed varieties. Interaction effect of yield was significant in 2013 at Patuakhali but insignificant in both the locations in 2012. During 2013 in Patuakhali, the interaction effect of BRRI dhan40 × USG and BRRI dhan41 × USG produced higher grain yield and total N uptake. In Satkhira BRRI dhan54 and BRRI dhan40 performed better and produced higher grain yield and N uptake. Among the N application treatments USG application was the best compared to either LCC or RCM. The combination of BRRI dhan54×USG and BRRI dhan41×USG had more economic gains in both 2012 and 2013 in Patuakhali. The combination of BRRI dhan52×USG and BRRI dhan41×LCC appeared as themost profitable in Satkhira during 2013. Integration of saline tolerant varieties along with USG application could improve the yield of saline tolerant rice in saline environmentBangladesh Rice j. 2017, 21(1): 77-89


2003 ◽  
Vol 3 ◽  
pp. 768-789 ◽  
Author(s):  
Upendra M. Sainju ◽  
Wayne F. Whitehead ◽  
Bharat P. Singh

In the past several decades, agricultural management practices consisting of intensive tillage and high rate of fertilization to improve crop yields have resulted in the degradation of soil and environmental qualities by increasing erosion and nutrient leaching in the groundwater and releasing greenhouses gases, such as carbon dioxide (CO2) and nitrous oxide (N2O), that cause global warming in the atmosphere by oxidation of soil organic matter. Consequently, management practices that sustain crop yields and improve soil and environmental qualities are needed. This paper reviews the findings of the effects of tillage practices, cover crops, and nitrogen (N) fertilization rates on crop yields, soil organic carbon (C) and N concentrations, and nitrate (NO3)-N leaching from the soil. Studies indicate that conservation tillage, such as no-till or reduced till, can increase soil organic C and N concentrations at 0- to 20-cm depth by as much as 7–17% in 8 years compared with conventional tillage without significantly altering crop yields. Similarly, cover cropping and 80–180 kg N ha–1year–1fertilization can increase soil organic C and N concentrations by as much as 4–12% compared with no cover cropping or N fertilization by increasing plant biomass and amount of C and N inputs to the soil. Reduced till, cover cropping, and decreased rate of N fertilization can reduce soil N leaching compared with conventional till, no cover cropping, and full rate of N fertilization. Management practices consisting of combinations of conservation tillage, mixture of legume and nonlegume cover crops, and reduced rate of N fertilization have the potentials for sustaining crop yields, increasing soil C and N storage, and reducing soil N leaching, thereby helping to improve soil and water qualities. Economical and social analyses of such practices are needed to find whether they are cost effective and acceptable to the farmers.


mSphere ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Jialin Hu ◽  
Virginia L. Jin ◽  
Julie Y. M. Konkel ◽  
Sean M. Schaeffer ◽  
Liesel G. Schneider ◽  
...  

ABSTRACT Soil microbial transformations of nitrogen (N) can be affected by soil health management practices. Here, we report in situ seasonal dynamics of the population size (gene copy abundances) and functional activity (transcript copy abundances) of five bacterial genes involved in soil N cycling (ammonia-oxidizing bacteria [AOB] amoA, nifH, nirK, nirS, and nosZ) in a long-term continuous cotton production system under different management practices (cover crops, tillage, and inorganic N fertilization). Hairy vetch (Vicia villosa Roth), a leguminous cover crop, most effectively promoted the expression of N cycle genes, which persisted after cover crop termination throughout the growing season. Moreover, we observed similarly high or even higher N cycle gene transcript abundances under vetch with no fertilizer as no cover crop with N fertilization throughout the cover crop peak and cotton growing seasons (April, May, and October). Further, both the gene and transcript abundances of amoA and nosZ were positively correlated to soil nitrous oxide (N2O) emissions. We also found that the abundances of amoA genes and transcripts both positively correlated to field and incubated net nitrification rates. Together, our results revealed relationships between microbial functional capacity and activity and in situ soil N transformations under different agricultural seasons and soil management practices. IMPORTANCE Conservation agriculture practices that promote soil health have distinct and lasting effects on microbial populations involved with soil nitrogen (N) cycling. In particular, using a leguminous winter cover crop (hairy vetch) promoted the expression of key functional genes involved in soil N cycling, equaling or exceeding the effects of inorganic N fertilizer. Hairy vetch also left a legacy on soil nutrient capacity by promoting the continued activity of N cycling microbes after cover crop termination and into the main growing season. By examining both genes and transcripts involved in soil N cycling, we showed different responses of functional capacity (i.e., gene abundances) and functional activity (i.e., transcript abundances) to agricultural seasons and management practices, adding to our understanding of the effects of soil health management practices on microbial ecology.


2001 ◽  
Vol 1 ◽  
pp. 17-21 ◽  
Author(s):  
Basil Ibewiro ◽  
Martin Onuh ◽  
Nteranya Sanginga ◽  
Bernard Vanlauwe ◽  
Roel Merckx

Increasing use of herbaceous legumes such as mucuna (Mucuna pruriens var. utilis [Wright] Bruck) and lablab (Lablab purpureus [L.] Sweet) in the derived savannas of West Africa can be attributed to their potential to fix atmospheric nitrogen (N2). The effects of management practices on N2fixation in mucuna and lablab were examined using 15N isotope dilution technique. Dry matter yield of both legumes at 12 weeks was two to five times more in in situ mulch (IM) than live mulch (LM) systems. Land Equivalent Ratios, however, showed 8 to 30% more efficient utilization of resources required for biomass production under LM than IM systems. Live mulching reduced nodule numbers in the legumes by one third compared to values in the IM systems. Similarly, nodule mass was reduced by 34 to 58% under LM compared to the IM systems. The proportion of fixed N2in the legumes was 18% higher in LM than IM systems. Except for inoculated mucuna, the amounts of N fixed by both legumes were greater in IM than LM systems. Rhizobia inoculation of the legumes did not significantly increase N2fixation compared to uninoculated plots. Application of N fertilizer reduced N2fixed in the legumes by 36 to 51% compared to inoculated or uninoculated systems. The implications of cover cropping, N fertilization, and rhizobia inoculation on N contributions of legumes into tropical low-input systems were discussed.


HortScience ◽  
1996 ◽  
Vol 31 (1) ◽  
pp. 62-64 ◽  
Author(s):  
Wilfred Singogo ◽  
William J. Lamont ◽  
Charles W. Marr

Four cover crops {alfalfa (Medicago sativa L. `Kansas Common'), hairy vetch (Vicia villosa Roth), Austrian winter pea [Pisum sativum subsp. arvense (L.) Poir], and winter wheat (Triticum aestivum L. `Tam 107')}, alone and in combination with feedlot beef manure at 5 t·ha–1 were evaluated for 2 years to determine whether sufficient N could be supplied solely by winter cover cropping and manure application to produce high-quality muskmelons (Cucumis melo L. `Magnum 45') in an intensive production system using plastic mulch and drip irrigation. Among the legumes, hairy vetch produced the most biomass (8.9 t·ha–1) and accumulated the most N (247 kg·ha–1). Winter wheat produced more biomass (9.8 t·ha–1) than any of the legumes but accumulated the least N (87 kg·ha–1). Melon yields produced using legume cover crops alone were similar to those receiving synthetic N fertilizer at 70 or 100 kg·ha–1. Melons produced on plots with cover crops combined with beef manure did not differ significantly in yield from those produced on plots with only cover crops. Legume cover crops alone, used with plastic mulch and drip irrigation, provided sufficient N for the production of high-quality muskmelons.


Sign in / Sign up

Export Citation Format

Share Document