scholarly journals Sennoside Yields in Tinnevelly Senna Affected by Deflowering and Leaf Maturity

HortScience ◽  
2002 ◽  
Vol 37 (5) ◽  
pp. 768-772 ◽  
Author(s):  
H.H. Ratnayaka ◽  
B. Meurer-Grimes ◽  
D. Kincaid

Manual deflowering and leaf maturity were evaluated for effect on the yields of the bioactive sennosides A and B in Tinnevelly senna (Cassia angustifolia Vahl). Deflowering increased sennoside A and B concentration (percent dry weight) in leaves by 25%, the total leaf dry mass by 63%, and the harvest index by 22%, with the result that the sennoside A and B yield (grams) per plant doubled in response to deflowering. During the same time, net photosynthesis remained consistently lower in the deflowered plants. Youngest leaves had the greatest sennoside A and B concentration. A clone raised from cuttings of one seedling had lower sennoside A:B ratio than the plants raised from the seedlings. Although crop type and possibly environmental conditions influenced the sennoside A:B ratio, deflowering and leaf maturity had no effect. The sennoside A and B concentrations in the dried leaves of deflowered plants harvested in 1.5-hour intervals appeared to increase during the course of the day. Deflowering, harvesting of young leaves, and harvesting time of day constitute promising component technologies for field investigations.

HortScience ◽  
2021 ◽  
pp. 1-8
Author(s):  
Jennifer K. Boldt ◽  
James E. Altland

Silicon (Si) is a plant-beneficial element that can alleviate the effects of abiotic and biotic stress. Plants are typically classified as Si accumulators based on foliar Si concentrations (≥1% Si on a dry weight basis for accumulators). By this definition, most greenhouse-grown ornamentals are low Si accumulators. However, plants that accumulate low foliar Si concentrations may still accumulate high Si concentrations elsewhere in the plant. Additionally, screening cultivars for variability in Si uptake has not been investigated for low Si accumulator species. Therefore, the objective of this study was to assess cultivar variability in Si accumulation and distribution in petunia (Petunia ×hybrida). Eight cultivars (Supertunia Black Cherry, Supertunia Limoncello, Supertunia Priscilla, Supertunia Raspberry Blast, Supertunia Royal Velvet, Supertunia Sangria Charm, Supertunia Vista Silverberry, and Supertunia White Improved) were grown in a commercial peat-based soilless substrate under typical greenhouse conditions. They were supplemented with either 2 mm potassium silicate (+Si) or potassium sulfate (-Si) at every irrigation. Silicon supplementation increased leaf dry mass (4.5%) but did not affect total dry mass. In plants not receiving Si supplementation, leaf Si ranged from 243 to 1295 mg·kg−1, stem Si ranged from 48 to 380 mg·kg−1, flower Si ranged from 97 to 437 mg·kg−1, and root Si ranged from 103 to 653 mg·kg−1. Silicon supplementation increased Si throughout the plant, but most predominantly in the roots. Leaf Si in the 2 mm Si treatment ranged from 1248 to 3541 mg·kg−1 (173% to 534% increase), stem Si ranged from 195 to 654 mg·kg−1 (72% to 376% increase), flower Si ranged from 253 to 1383 mg·kg−1 (74% to 1082% increase), and root Si ranged from 4018 to 10,457 mg·kg−1 (593% to 9161% increase). The large increase in root Si following supplementation shifted Si distribution within plants. In nonsupplemented plants, it ranged from 51.2% to 76.8% in leaves, 8.2% to 40.2% in stems, 2.8% to 23.8% in flowers, and 1.2% to 13.8% in roots. In Si-supplemented plants, it ranged from 63.5% to 67.7% in leaves, 10.5% to 22.6% in roots, 9.4% to 17.7% in stems, and 1.6% to 9.6% in flowers. This study indicates that petunia, a low foliar Si accumulator, can accumulate appreciable quantities of Si in roots when provided supplemental Si.


Forests ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 256 ◽  
Author(s):  
Weiwei Huang ◽  
David Ratkowsky ◽  
Cang Hui ◽  
Ping Wang ◽  
Jialu Su ◽  
...  

Leaf dry mass per unit area (LMA) is considered to represent the photosynthetic capacity, which actually implies a hypothesis that foliar water mass (leaf fresh weight minus leaf dry weight) is proportional to leaf dry weight during leaf growth. However, relevant studies demonstrated that foliar water mass disproportionately increases with increasing leaf dry weight. Although scaling relationships of leaf dry weight vs. leaf area for many plants were investigated, few studies compared the scaling relationship based on leaf dry weight with that based on leaf fresh weight. In this study, we used the data of three families (Lauraceae, Oleaceae, and Poaceae, subfamily Bambusoideae) with five broad-leaved species for each family to examine whether using different measures for leaf biomass (i.e., dry weight and fresh weight) can result in different fitted results for the scaling relationship between leaf biomass and area. Reduced major axis regression was used to fit the log-transformed data of leaf biomass and area, and the bootstrap percentile method was used to test the significance of the difference between the estimate of the scaling exponent of leaf dry weight vs. area and that of leaf fresh weight vs. area. We found that there were five species across three families (Phoebe sheareri (Hemsl.) Gamble, Forsythia viridissima Lindl., Osmanthus fragrans Lour., Chimonobambusa sichuanensis (T.P. Yi) T.H. Wen, and Hibanobambusa tranquillans f. shiroshima H. Okamura) whose estimates of the scaling exponent of leaf dry weight to area and that of leaf fresh weight to area were not significantly different, whereas, for the remaining ten species, both estimates were significantly different. For the species in the same family whose leaf shape is narrow (i.e., a low ratio of leaf width to length) the estimates of two scaling exponents are prone to having a significant difference. There is also an allometric relationship between leaf dry weight and fresh weight, which means that foliar water mass disproportionately increases with increased leaf dry weight. In addition, the goodness of fit for the scaling relationship of leaf fresh weight vs. area is better than that for leaf dry weight vs. area, which suggests that leaf fresh mass might be more able to reflect the physiological functions of leaves associated with photosynthesis and respiration than leaf dry mass. The above conclusions are based on 15 broad-leaved species, although we believe that those conclusions may be potentially extended to other plants with broad and flat leaves.


2018 ◽  
Vol 50 ◽  
pp. 01038
Author(s):  
Ana Monteiro ◽  
Generosa Teixeira ◽  
Cristina Santos ◽  
Carlos M. Lopes

This study compare leaf morphoanatomical characteristics of four red cultivars - ‘Touriga Nacional’, ‘Trindadeira’, ‘Cabernet Sauvignon’ and ‘Syrah’ -, grown side by side at the same terroir. The analyzed leaf traits, under light and scanning electron microscopy, showed large variability among genotypes. ‘Trincadeira’ has the biggest single leaf area and ‘Cabernet Sauvignon’ the smallest one. ‘Touriga Nacional’ showed the lowest leaf dry weight and ‘Trincadeira’ the highest one, nonetheless there was no significantly differences in leaf dry mass per area and in leaf density. Leaf dry mass per area was positively correlated with leaf density but showed no correlation with leaf thickness. The French genotypes presented higher thickness of the leaf anatomical traits than the two Portuguese ones. ‘Trincadeira’ showed significantly highest stomata density while the other cultivars showed no significant differences among them. The analyses of the three types of stomata revealed that ‘Trincadeira’ has the lower percentage of raised above and the highest percentage of sunken stomata while ‘Cabernet Sauvignon’ showed the opposite behaviour. The hairs on the lower surface presented a similar woolly aspect in all cultivars. The possible role of leaf morphoanatomical characteristics in determining the cultivars adaptation to abiotic stresses is suggested and discussed.


2021 ◽  
Vol 280 ◽  
pp. 06009
Author(s):  
Vasyl Lopushniak ◽  
Нalyna Hrytsuliak ◽  
Mykhailo Gumentyk ◽  
Mykola Kharytonov ◽  
Bazena Barchak ◽  
...  

The case study to determine the peculiarities of Miscanthus giganteus aboveground biomass formation depending on sewage sludge and composts rate carried out in the Precarpathian region of Ivano- Frankivsk province on sod-podzolic soils. The largest area of the leaf surface of miscanthus is formed in the trials where fresh sewage sludge was applied in the rate of 20 - 40 t/ha. The leaf surface area increases from 19 up to 24.0 cm2/plant, and the yield of raw mass of plants at the level of 23.5 - 25.1 t/ha due to increasing rates of sewage sludge application. The highest indicators of net photosynthesis productivity were found in the period of intensive growth, which amounted to 7.78 g/m²/day and in the maturation period of 7.56 g/m²/day in the trial SS - 40 t/ha + N10P14K58. The amount of dry mass of miscanthus plants significantly depends on the height of the shoot and the leaf surface area of the plants. The use of compost based on sewage sludge and straw in a ratio of 3: 1 at a rate of 30 t/ha contributes to the dry weight of miscanthus plants at the level of 15 t/ha.


2002 ◽  
Vol 37 (4) ◽  
pp. 439-447 ◽  
Author(s):  
Moacyr Bernardino Dias-Filho

Some physiological and morphological responses of five Brachiaria brizantha accessions (BRA000591 cultivar Marandu, BRA003441, BRA002844, BRA004308 and BRA004391) were compared for plants grown in pots under flooding and well-drained conditions for 14 days. Flooding caused a significant reduction in leaf dry mass production in all accessions, but, for root biomass, no differences between treatments could be detected in BRA003441 and BRA004391. No adventitious root production was observed in flooded BRA003441; all other accessions produced adventitious roots when flooded. Relative growth rate was reduced by flooding only in BRA000591 and BRA004308. Leaf elongation rate was reduced by flooding in all accessions, however, more severely in BRA003441. Net photosynthesis was reduced by flooding in all accessions, but with less intensity in BRA004391. For all accessions, there was a close relationship between net photosynthesis and stomatal conductance under flooding. The five accessions tested differed in tolerance to flooding. BRA004391 was the most tolerant. Accession BRA003441 was the most sensitive, followed by BRA000591 cultivar Marandu. Accessions BRA002844 and BRA004308 were classified as intermediate in flooding tolerance.


Author(s):  
Eduardo A L Erasmo ◽  
Rogério C Gonçalves ◽  
Jhansley F Da Mata ◽  
Vinícius A Oliveira ◽  
Luíz P F Benício

This study aims to evaluate the density and planting period of the grass Brachiaria brizantha in consortium with the soybean. The study was conducted under field conditions at the experimental station of University of Tocantins. The experimental design used was a randomized block design, in factorial scheme of (2 x 5) + 4, with four repetitions, including both sowing of Brachiaria brizantha (20 and 30 days after the emergence – DAE, of soybeans), five Brachiaria seeding densities (0, 3, 6, 9, and 12kg of seed ha-1) and Brachiaria grown individually in the four densities tested, constituting itself as witness reference. To assess the growth of the Brachiaria, the plants contained in an area of ​​(0.33 x 0.40m) to 140 DAP of soy were collected in each plot, determining the number of tillers per plant; height and dry weight of shoots; leaf dry mass and dry mass stalk. Data were submitted to regression analysis. The cultivation of Brachiaria intercropped with soybean provoked a decrease in all parameters evaluated. The increase in the density of sowing promoted a reduction in the tillering and an increase in dry matter production and height of the plant.


HortScience ◽  
2014 ◽  
Vol 49 (10) ◽  
pp. 1292-1297 ◽  
Author(s):  
María José Gómez-Bellot ◽  
Pedro Antonio Nortes ◽  
María Fernanda Ortuño ◽  
María Jesús Sánchez-Blanco ◽  
Karoline Santos Gonçalves ◽  
...  

Euonymus japonica Thunb. (euonymus) plants were submitted for 9 months to two irrigation treatments using water from different sources: a control (C) water with electrical conductivity (EC) less than 1.2 dS·m−1 and reclaimed wastewater (RW) with EC ≈4 dS·m−1. At the end of the experiment, no differences in the total dry weight were observed between treatments, whereas the leaf dry mass increased (to the detriment of the root part in RW plants). Throughout the day, the stem water potential (Ψstem) of the RW plants was lower than in C, whereas stomatal conductance (gS) was slightly reduced in RW from 0800 hr to 1200 hr, but no significant variation in photosynthesis (Pn) or energy conversion efficiency (F′v/F′m) in photosystem II was detected through the effect of salinity. Gas exchange and fluorescence showed a tendency to increase after midday in plants treated with RW. The photosynthetic behavior and fluorescence of RW plants may have been related to the nitrogen and chlorophyll content of the leaves, confirming the resistance of the photosynthetic mechanism to salinity in this species in these conditions. The toxic effects produced by high concentrations of boron (B), sodium (Na+) and chloride (Cl–) were offset by the effect of other ions like magnesium (Mg2+), potassium (K+), and phosphorus (P) in plants irrigated with RW, thus improving their physiological status without decreasing their ornamental value.


1995 ◽  
Vol 120 (3) ◽  
pp. 454-459 ◽  
Author(s):  
Sven E. Svenson ◽  
Fred T. Davies ◽  
Sharon A. Duray

Gas exchange, water relations, and dry weight partitioning of shoot tip cuttings of `Eckespoint Lilo Red' (`Lilo') and `Gutbier V-10 Amy Red' (`Amy') poinsettia (Euphorbia pulcherrima Wind. ex Klotzsch) were studied during the initiation and development of adventitious roots. Net photosynthesis (A) and stomatal conductance (g) of cuttings were initially low and remained low until root primordia formation. Foliar relative water content (RWC) and osmotic potential (ψπ) increased upon formation of root primordia. Following formation of root primordia (2 days before visible root emergence) and concurrent with increasing RWC and ψπ, g increased. As roots initially emerged, A and g increased rapidly and continued to increase with further root primordia development and subsequent emergence of adventitious roots. Cutting stem and leaf dry mass and leaf area increased during the first few days after sticking cuttings. During primordium development and initial root emergence, the highest percent increase in dry weight was accounted for by basal stem sections. AU cuttings of both cultivars rooted and had similar root numbers after 23 days, but `Lilo' cuttings had 15% better rooting and 44% more roots than `Amy' after 15 days. This research supports the hypothesis that formation and elongation of root primordia coincides with increased gas exchange in poinsettia cuttings, and that gas exchange can be used as a nondestructive indicator of adventitious root development.


Author(s):  
R.D. Leapman ◽  
S.Q. Sun ◽  
S-L. Shi ◽  
R.A. Buchanan ◽  
S.B. Andrews

Recent advances in rapid-freezing and cryosectioning techniques coupled with use of the quantitative signals available in the scanning transmission electron microscope (STEM) can provide us with new methods for determining the water distributions of subcellular compartments. The water content is an important physiological quantity that reflects how fluid and electrolytes are regulated in the cell; it is also required to convert dry weight concentrations of ions obtained from x-ray microanalysis into the more relevant molar ionic concentrations. Here we compare the information about water concentrations from both elastic (annular dark-field) and inelastic (electron energy loss) scattering measurements.In order to utilize the elastic signal it is first necessary to increase contrast by removing the water from the cryosection. After dehydration the tissue can be digitally imaged under low-dose conditions, in the same way that STEM mass mapping of macromolecules is performed. The resulting pixel intensities are then converted into dry mass fractions by using an internal standard, e.g., the mean intensity of the whole image may be taken as representative of the bulk water content of the tissue.


2016 ◽  
Vol 38 (2) ◽  
Author(s):  
MARCUS VINICIUS SANDOVAL PAIXÃO ◽  
JOSÉ CARLOS LOPES ◽  
EDILSON ROMAIS SCHMILDT ◽  
RODRIGO SOBREIRA ALEXANDRE ◽  
CAROLINE MERLO MENEGHELLI

ABSTRACT This study aimed to evaluate the potential of multi-stems in avocado seeds according to their mass as well as the adventitious rooting of multi-stem budding with or without the use of auxin. The research was carried out at the Vegetation House of Federal Institute of Espírito Santo, Campus Santa Teresa -ES, with seeds of different masses: <60 g, 61 to 80 g, 81 to 100 g and >100 g, in which each experimental unit was made of five seeds, distributed within five repetitions, under a completely randomized design. The seeds were put to germinate and the percentage number of emergence and multiple stems were evaluated. After 150 days, the following evaluations were carried out: survival of rooted cuttings; number of leaves; stem diameter; root length; root volume; root and shoot fresh mass; root and shoot dry mass; shoot height; absolute growth and shoot growth rate; shoot dry weight/root dry mass ratio; shoot height/stem diameter ratio; shoot height/root length and Dickson's quality index ratio. Avocado seeds with mass over 100 g and between 81-100 g presented higher percentage of multiple stems. Rods over 20 cm that were not treated with IBA (indole-3-butyric acid) resulted on avocado plants of better quality. The use of IBA (2000 mg L-1) does not affect the rooting and growth of avocado's multi-stem plants.


Sign in / Sign up

Export Citation Format

Share Document