scholarly journals Rootstock Effects on Growth, Cell Number, and Cell Size of `Gala' Apples

2004 ◽  
Vol 129 (1) ◽  
pp. 37-41 ◽  
Author(s):  
Yahya K. Al-Hinai ◽  
Teryl R. Roper

The effects of rootstock on growth of fruit cell number and size of `Gala' apple trees (Malus domestica Borkh) were investigated over three consecutive seasons (2000-02) growing on Malling 26 (M.26), Ottawa-3, Pajam-1, and Vineland (V)-605 rootstocks at the Peninsular Agricultural Research Station near Sturgeon Bay, WI. Fruit growth as a function of cell division and expansion was monitored from full bloom until harvest using scanning electron microscopy (SEM). Cell count and cell size measurements showed that rootstock had no affect on fruit growth and final size even when crop load effects were removed. Cell division ceased about 5 to 6 weeks after full bloom (WAFB) followed by cell expansion. Fruit size was positively correlated (r2 = 0.85) with cell size, suggesting that differences in fruit size were primarily a result of changes in cell size rather than cell number or intercellular space (IS).

HortScience ◽  
2004 ◽  
Vol 39 (6) ◽  
pp. 1231-1233 ◽  
Author(s):  
Yahya K. Al-Hinai ◽  
Teryl R. Roper

The effect of rootstock on apple size is not clear due to inconsistent results of published studies. This study was conducted over 3 years at the Peninsular Agricultural Research Station near Sturgeon Bay, WI on 6-year-old `Gala' apple trees (Malus domestica Borkh) grafted on Malling 26 (M.26), Ottawa 3, M.9 Pajam 1, and Vineland (V)-605 rootstocks. Fruit diameter was measured weekly. Fruit weight and volume were estimated by a quadratic regression of weekly measurements. Fruit weight was positively correlated with fruit volume. Rootstock had no effect on fruit growth and final size even with the removal of crop load effects. Crop load was a highly significant covariate for fruit size, but canopy light interception and seed count were not. Trees on M.26 EMLA had slightly higher yield in 2000 but rootstock did not affect yield efficiency any year. Rootstock had no influence on fruit quality attributes during 2001; however, in 2002, fruit obtained from trees on Pajam-1 tended to be less firm. Generally, apple fruit size was influenced by crop load and other factors, but not by rootstock.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 516D-516
Author(s):  
C.J. Stanley ◽  
D.S. Tustin

Many factors contribute to final apple fruit size. Researchers have studied these factors and have developed models, some very complex. Results from many New Zealand regions over several years suggest that early season temperature along with crop load are the key factors driving final fruit size. Accumulated growing degree days from full bloom to 50 days after full bloom (DAFB), accounted for 90% of the variance in fruit weight of `Royal Gala' apples at 50 DAFB under nonlimiting low-crop-load conditions. In turn, fruit weight at 50 DAFB accounted for 90% of the variance in final fruit size at harvest under the low-crop-load conditions. We hypothesise that a potential maximum fruit size is set by 50 DAFB, determined by total fruit cell number, resulting from a temperature-responsive cell division phase. Under conditions of no limitations after the cell division phase, we suggest that all cells would expand to their optimum size to provide the maximum fruit size achievable for that cell number. Factors which affect growth partitioning among fruits, e.g., higher crop loads, would reduce final fruit size, for any given cell number, when grown in the same environment. In Oct. 1999, four different crop loads were established at full bloom on `Royal Gala' trees (M9 rootstock) in four climatically different regions. In Hawkes Bay, similar crop loads were established at 50 DAFB on additional trees. Hourly temperatures were recorded over the season. Fruit size was measured at 50 DAFB and fruit will be harvested in Feb. 2000. These data should provide fresh insight and discussion into the respective roles of temperature and competition during the cell division fruit growth phase on apple fruit size.


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 868C-868
Author(s):  
Anish Malladi* ◽  
Peter Hirst

Fruit size is a commercially valuable trait. Although several factors are known to affect fruit size in apple, insights into the molecular aspects of its regulation are lacking. Our research aims to understand fruit size regulation using a combination of approaches. Analysis of a large fruited mutant of `Gala', `Grand Gala' (GG), showed that it was 40% heavier than `Gala' at harvest. Increase in size of GG fruit was caused by an increase in the cell size apparent at full bloom. Flow cytometry revealed the presence of multiple levels of ploidy (up to 16C) in GG during early fruit development. Increase in ploidy of GG is hypothesized to be due to endoreduplication, a process normally absent in apple. Endoreduplication is a modification of the cell cycle where DNA replication is not followed by cell division, resulting in increased DNA content accompanied by increased cell size. To understand if the cell cycle is altered in GG, four key cell cycle regulators, MdCDKA1, MdCDKB1, MdCYCB2 and MdCYCD3 have been partially cloned from apple using RT-PCR and RACE. As cell number at the end of the cell division phase is correlated with fruit size at harvest, expression analysis of these genes can provide valuable insights into their role in the regulation of cell number and fruit size. Analysis of cell cycle gene expression in GG may provide key insights into the altered molecular regulation that leads to endoreduplication in the mutant. Parallel approaches being employed to study whether environmental and cultural factors regulate fruit size through an influence on the cell cycle will also be discussed.


HortScience ◽  
2012 ◽  
Vol 47 (11) ◽  
pp. 1580-1585 ◽  
Author(s):  
Todd C. Einhorn ◽  
Janet Turner ◽  
Debra Laraway

Reflective fabric was installed before bloom in 2009 and 2010 in alleyways of a mature, low-density ‘Anjou’ pear orchard (269 trees/ha). Four treatments were applied to study intracanopy light environments on fruit growth rate and size, cropload, yield, and fruit quality: 1) no fabric (NF); 2) partial-season fabric applied before full bloom (FB) and removed 75 days after full bloom (dafb) (PSF); 3) full-season fabric applied before FB and removed at harvest (FSF); and 4) shadecloth (60%) applied 60 dafb through harvest (SC). PSF and FSF improved yield by 12% and 18%, respectively, over the two-year period relative to NF. The high yields of fabric treatments were attributed to fruit number in the lower (less than 2.4 m) interior, mid-, and exterior zones of the canopy. Photosynthetic active radiation (PAR) was increased by fabric 28%, 95%, and 30% in the lower exterior, mid-, and interior canopy, respectively. Photosynthesis:light response curves indicated improved carbon assimilation of pear leaves developing in the elevated PAR environment of the lower canopy. Fruit growth rate and final size were unaffected by fabric treatments. FSF fruit size was similar to NF despite higher fruit density. Compared with NF, FSF had a small, non-significant effect on fruit maturity (increased softening) at harvest. Yield and fruit size of SC fruit were significantly reduced. The number of fruit in SC trees did not differ from NF in 2009, but the effect of shade reduced fruit number in 2010. Fabric did not affect fruit quality attributes after three and six months of regular atmosphere cold storage. Pears from SC trees did not attain ripening capacity after three months of cold storage and a 7-day ripening period and had lower sugar content compared with other treatments. The cumulative yield advantages associated with FSF support its use in mature pear orchards.


2015 ◽  
Vol 42 (9) ◽  
pp. 817 ◽  
Author(s):  
Robert C. O. Okello ◽  
Ep Heuvelink ◽  
Pieter H. B. de Visser ◽  
Paul C. Struik ◽  
Leo F. M. Marcelis

Cell division, endoreduplication (an increase in nuclear DNA content without cell division) and cell expansion are important processes for growth. It is debatable whether organ growth is driven by all three cellular processes. Alternatively, all could be part of a dominant extracellular growth regulatory mechanism. Cell level processes have been studied extensively and a positive correlation between cell number and fruit size is commonly reported, although few positive correlations between cell size or ploidy level and fruit size have been found. Here, we discuss cell-level growth dynamics in fruits and ask what drives fruit growth and during which development stages. We argue that (1) the widely accepted positive correlation between cell number and fruit size does not imply a causal relationship; (2) fruit growth is regulated by both cell autonomous and noncell autonomous mechanisms as well as a global coordinator, the target of rapamycin; and (3) increases in fruit size follow the neocellular theory of growth.


2018 ◽  
Vol 43 (1) ◽  
pp. 71-80
Author(s):  
N Ara ◽  
M Moniruzzaman ◽  
R Khatoon ◽  
M Moniruzzaman

An experiment was carried out at the Regional Agricultural Research Station, BARI, Ishurdi, Pabna during 2013-15, with eleven genotypes of plantain to evaluate their performances for yield attributes, yield and quality characters. The genotypes included in this investigation were MP001, MP002, MP003, MP006, MP007, MP015, MP018, MP024, MP025, ISD002 and BARI Kola-2 as check. The experiment was laid out in randomized complete block design with three replications. The genotype MP002 produced the maximum number of fingers/bunch (105.67) closely followed by BARI Kola-2 (103.00) and MP015 (101.00). Both the genotypes MP024 and MP025 showed the highest fruit length (21.70 cm), but ISD002 gave the maximum fruit girth (16.78 cm), which was statistically similar with that of MP003 (16.30 cm) and MP024 (16.33 cm). The highest yield and the maximum number of hands were produced by the genotype MP024 (47.81 t/ha and (8.33/bunch) followed by MP015 (36.70 t/ha and 6.33/bunch). Fingers of the genotypes required boiling time in the range of 20.00 min (MP001) to 15.00 min (BARI Kola-2). Flesh of all genotypes possesses pleasant aroma except MP002, MP003 and ISD002. Among the eleven genotypes MP001, MP006, MP007, MP008, MP015 and MP024 were found better when cooked as smashed. The genotype ISD002 took the maximum time (467.33 days) to reach the edible maturity stage of fruits whereas MP024 required the minimum (339.00 days). The genotypes MP015 and MP024 performed better than BARI Kola-2 in respect of bunch weight, fruit size, productivity index, yield, sucker production and qualitative characters.Bangladesh J. Agril. Res. 43(1): 71-80, March 2018


1941 ◽  
Vol 19c (10) ◽  
pp. 371-382 ◽  
Author(s):  
Mary MacArthur ◽  
R. H. Wetmore

Growth in the various tissues of the fruit of a McIntosh Red and a Wagener tree, both self-pollinated, is compared. For several days succeeding pollination no increase in fruit size is apparent. Fertilization is followed by general cell division and cell enlargement. The period of cell division varies with the tissue and with the variety. Final cell size is reached first by the cells of those tissues near the centre of the apple. Impressed upon the fundamental pattern of growth is the localized activity of the primary vascular bundles, the cambia of which add cells to the ground tissue. Angulation in the Wagener is accentuated by this activity. With the exception of cells of the epidermis, final cell size is approximately equal in comparable regions of the two varieties. Differences in regional extent are due to differences in numbers of cells in that region.


1984 ◽  
Vol 11 (6) ◽  
pp. 553 ◽  
Author(s):  
ME Nicolas ◽  
RM Gleadow ◽  
MJ Dalling

The effects of two levels of temperature and of water supply on grain development of wheat (cv. Warigal) were studied by imposing treatments during the early or late period of cell division. High temperature (28°C day/20°C night) accelerated development of the grain. Dry matter accumulation and cell division proceeded at a higher rate but had a shorter duration in the high temperature treatments. Maximum cell number, final cell size and the number of large starch granules per cell were not significantly reduced by high temperature. Drought and drought × high temperature reduced the storage capacity of the grain, with a decrease in number of cells and starch granules in the endosperm. Cell size was also reduced when treatments were imposed late during cell division. Duration of dry matter accumulation and cell division was reduced in the drought and drought × high temperature treatments. The combined effects of drought and high temperature were much more severe than those of each separate treatment. The amount of sucrose per cell was similar in all treatments. It appears unlikely that the supply of sucrose to the endosperm cells is the main limiting factor of dry matter accumulation in both drought and high temperature treatments.


1967 ◽  
Vol 18 (1) ◽  
pp. 95 ◽  
Author(s):  
DI Jackson ◽  
BG Coombe

The effect of temperature and gibberellic acid (GA3) applications on apricot fruit have been determined by measurements of fruit size and shape, mesocarp cell number, size, and shape, and endogenous gibberellin. Application of heat during the first 10 nights after anthesis increased the initial growth rate of fruit and of cells in the mesocarp and produced more rapid cell division in this tissue. It did not affect final fruit size or the number and diameter of cells in the mesocarp. Higher temperatures did, however, hasten maturity of fruit. GA3 perfused into branches before anthesis produced an increased drop of flower buds and fruit, raised the ratio of flower buds to leaf buds initiated that season, and resulted in elongated pedicels. Initially, fruit growth rate was increased by GA3, but subsequently it was depressed and final size was below normal. These effects on fruit size were mainly due to effects on the rate of cell division. Some differences were noted in the dimensions of cells but final radial cell diameter did not differ from untreated fruit. GA3-treated fruit ripened sooner than controls. Neither heating nor GA3 treatments affected the level of endogenous gibberellin-like substances in the fruit or their RF on paper chromatograms. There were no significant interactions between temperature and gibberellin in any parameter of apricot fruit growth.


2012 ◽  
Vol 137 (5) ◽  
pp. 294-301 ◽  
Author(s):  
Julienne Fanwoua ◽  
Pieter de Visser ◽  
Ep Heuvelink ◽  
Gerco Angenent ◽  
Xinyou Yin ◽  
...  

To improve our understanding of fruit growth responses to temperature, it is important to analyze temperature effects on underlying fruit cellular processes. This study aimed at analyzing the response of tomato (Solanum lycopersicum) fruit size to heating as affected by changes in cell number and cell expansion in different directions. Individual trusses were enclosed into cuvettes and heating was applied either only during the first 7 days after anthesis (DAA), from 7 DAA until fruit maturity (breaker stage), or both. Fruit size and histological characteristics in the pericarp were measured. Heating fruit shortened fruit growth period and reduced final fruit size. Reduction in final fruit size of early-heated fruit was mainly associated with reduction in final pericarp cell volume. Early heating increased the number of cell layers in the pericarp but did not affect the total number of pericarp cells. These results indicate that in the tomato pericarp, periclinal cell divisions respond differently to temperature than anticlinal or randomly oriented cell divisions. Late heating only decreased pericarp thickness significantly. Continuously heating fruit reduced anticlinal cell expansion (direction perpendicular to fruit skin) more than periclinal cell expansion (direction parallel to fruit skin). This study emphasizes the need to measure cell expansion in more than one dimension in histological studies of fruit.


Sign in / Sign up

Export Citation Format

Share Document