scholarly journals Light Transmission Through Colored Polyethylene Mulches Affects Weed Populations

HortScience ◽  
2004 ◽  
Vol 39 (6) ◽  
pp. 1302-1304 ◽  
Author(s):  
Mathieu Ngouajio ◽  
Jeremy Ernest

Weed control is one of the benefits associated with the use of plastic mulches used for vegetable production. The mulches decrease light transmission and prevent development of most weed species. Plastics chemistry has developed films varying in their ability to reflect, absorb, and transmit light. Laboratory and field experiments were conducted to 1) measure light transmitted through colored mulches, 2) evaluate weed populations under each mulch type, and 3) determine if light transmission could be used as an indicator for weed populations in the field. The polyethylene mulches were black, gray, infrared transmitting brown (IRT-brown), IRT-green, white, and white-on-black (co-extruded white/black). On average, 1%, 2%, 17%, 26%, 42%, and 45% light in the 400 to 1100 nm range was transmitted through the black, white/black, gray, IRT-brown, IRT-green, and white mulches, respectively. In field experiments, density and dry biomass of weeds growing under the mulches were evaluated. The white mulch had the highest weed density with an average of 39.6 and 155.9 plants/m2 in 2001 and 2002, respectively. This was followed by the gray mulch, with 10.4 and 44.1 weed seedlings/m2 in 2001 and 2002, respectively. Weed density was <25 plants/m2 with the other mulches in both years. Weed infestation was correlated with average light transmission for white, black, white/black, and gray mulches. However, both light quantity and quality were necessary to predict weed infestations with the IRT mulches. Weed infestation under the IRT mulches was better estimated when only wave lengths in the photosynthetically active radiation range (PAR; 400 to 700 nm) were considered. Low weed pressure and high light transmission with the IRT mulches would make them appropriate for use in areas where both weed control and soil warming are important factors.

2020 ◽  
Vol 57 (3) ◽  
pp. 199-210
Author(s):  
Rajib Kundu ◽  
Mousumi Mondal ◽  
Sourav Garai ◽  
Ramyajit Mondal ◽  
Ratneswar Poddar

Field experiments were conducted at research farm of Bidhan Chandra Krishi Viswavidyalaya, Kalyani, West Bengal, India (22°97' N latitude and 88°44' E longitude, 9.75 m above mean sea level) under natural weed infestations in boro season rice (nursery bed as well as main field) during 2017-18 and 2018-19 to evaluate the herbicidal effects on weed floras, yield, non-target soil organisms to optimize the herbicide use for sustainable rice-production. Seven weed control treatments including three doses of bispyribac-sodium 10% SC (150,200, and 250 ml ha-1), two doses of fenoxaprop-p-ethyl 9.3% EC (500 and 625 ml ha-1), one weed free and weedy check were laid out in a randomized complete block design, replicated thrice. Among the tested herbicides, bispyribac-sodium with its highest dose (250 ml ha-1) resulted in maximum weed control efficiency, treatment efficiency index and crop resistance index irrespective of weed species and dates of observation in both nursery as well as main field. Similar treatment also revealed maximum grain yield (5.20 t ha-1), which was 38.38% higher than control, closely followed by Fenoxaprop-p-ethyl (625 ml ha-1) had high efficacy against grasses, sedge and broadleaf weed flora. Maximum net return (Rs. 48765 ha-1) and benefit cost ratio (1.72) were obtained from the treatment which received bispyribac-sodium @ 250 ml ha-1. Based on overall performance, the bispyribac-sodium (250 ml ha-1) may be considered as the best herbicide treatment for weed management in transplanted rice as well as nursery bed.


2004 ◽  
Vol 52 (2) ◽  
pp. 199-203 ◽  
Author(s):  
G. Singh ◽  
R. S. Jolly

Two field experiments were conducted during the kharif (rainy) season of 1999 and 2000 on a loamy sand soil to study the effect of various pre- and post-emergence herbicides on the weed infestation and grain yield of soybean. The presence of weeds in the weedy control plots resulted in 58.8 and 58.1% reduction in the grain yield in the two years compared to two hand weedings (HW) at 30 and 45 days after sowing (DAS), which gave grain yields of 1326 and 2029 kg ha-1. None of the herbicides was significantly superior to the two hand weedings treatment in influencing the grain yield. However, the pre-emergence application of 0.75 kg ha-1 S-metolachlor, and 0.5 kg ha-1 pendimethalin (pre-emergence) + HW 30 DAS were at par or numerically superior to this treatment. There was a good negative correlation between the weed dry matter at harvest and the grain yield of soybean, which showed that effective weed control is necessary for obtaining higher yields of soybean.


1997 ◽  
Vol 11 (3) ◽  
pp. 515-519 ◽  
Author(s):  
Julio A. Scursoni ◽  
Emilio H. Satorre

The objective of this paper was to evaluate the effect of preplant applications of trifluralin on barley stand and yield, and control of grass weeds in field experiments during 1992 and 1993. Factors examined were: (1) crop planting patterns (conventional drill with rows 15 cm apart and deep-seeder drill with rows 25 cm apart), (2) herbicide application times (22 d before sowing and immediately before sowing), and (3) herbicide application. During 1993, hand-weeded plots also were established. Trifluralin applied preplant at 528 g ai/ha reduced weed density and biomass. Weed control was higher under conventional planting than under the deep planting pattern, and there was no effect of the time of application on herbicide efficacy. There was no herbicide injury to the crop, and grain yield was higher in treated than in untreated plots due to successful weed control.


2019 ◽  
Vol 99 (4) ◽  
pp. 437-443
Author(s):  
Nader Soltani ◽  
Robert E. Nurse ◽  
Amit J. Jhala ◽  
Peter H. Sikkema

A study consisting of 13 field experiments was conducted during 2014–2016 in southwestern Ontario and southcentral Nebraska (Clay Center) to determine the effect of late-emerging weeds on the yield of glyphosate-resistant soybean. Soybean was maintained weed-free with glyphosate (900 g ae ha−1) up to the VC (cotyledon), V1 (first trifoliate), V2 (second trifoliate), V3 (third trifoliate), V4 (fourth trifoliate), and R1 (beginning of flowering) growth stages, after which weeds were allowed to naturally infest the soybean plots. The total weed density was reduced to 24%, 63%, 67%, 72%, 76%, and 92% in Environment 1 (Exeter, Harrow, and Ridgetown) when soybean was maintained weed-free up to the VC, V1, V2, V3, V4, and R1 soybean growth stages, respectively. The total weed biomass was reduced by 33%, 82%, 95%, 97%, 97%, and 100% in Environment 1 (Exeter, Harrow, and Ridgetown) and 28%, 100%, 100%, 100%, 100%, and 100% in Environment 2 (Clay Center) when soybean was maintained weed-free up to the VC, V1, V2, V3, V4, and R1 stages, respectively. The critical weed-free periods for a 2.5%, 5%, and 10% yield loss in soybean were the V1–V2, VC–V1, and VC–V1 soybean stages in Environment 1 (Exeter, Harrow, and Ridgetown) and V2–V3, V2–V3, and V1–V2 soybean stages in Environment 2 (Clay Center), respectively. For the weed species evaluated, there was a minimal reduction in weed biomass (5% or less) when soybean was maintained weed-free beyond the V3 soybean growth stage. These results shows that soybean must be maintained weed-free up to the V3 growth stage to minimize yield loss due to weed interference.


Weed Science ◽  
1996 ◽  
Vol 44 (1) ◽  
pp. 126-132 ◽  
Author(s):  
Anita Dieleman ◽  
Allan S. Hamill ◽  
Glenn C. Fox ◽  
Clarence J. Swanton

Weed control decision rules were derived for the application of postemergence herbicides to control pigweed species in soybean. Field experiments were conducted at two locations in 1992 and 1993 to evaluate soybean-pigweed interference. A damage function was determined that related yield loss to time of pigweed emergence, density, and soybean weed-free yield. A control function described pigweed species response to variable doses of imazethapyr and thifensulfuron. The integration of these two functions formed the basis of an economic model used to derive two weed control decision rules, the biologist's “threshold weed density” and the economist's “optimal dose.” Time of weed emergence had a more significant role than weed density in the economic model. Later-emerging pigweed caused less yield loss and therefore, decision rules lead to overuse of herbicides if emergence time is not considered. The selected herbicide dose influenced the outcome of the control function. Depending on the desired level of weed control, a herbicide could be chosen to either eradicate the escaped weed species (label or biologically-effective doses) or reduce the growth of the weed species and thereby offset interference (optimal dose). The development of a biologically-effective dose by weed species matrix was recommended. Decision rules should not be utilized as an exclusive weed management strategy but rather as a component of an integrated weed management program.


2020 ◽  
Vol 34 (6) ◽  
pp. 834-842
Author(s):  
Caio A. C. G. Brunharo ◽  
Seth Watkins ◽  
Bradley D. Hanson

AbstractWeed control in tree nut orchards is a year-round challenge for growers that is particularly intense during winter through summer as a result of competition and interference with management and harvest operations. A common weed control program consists of an application of a winter PRE and POST herbicide mixture, followed by a desiccation treatment in early spring and before harvest. Because most spring and summer treatments depend on a limited number of foliar-applied herbicides, summer-germinating species and/or herbicide-resistant biotypes become troublesome. Previous research has established effective PRE herbicide programs targeting winter glyphosate-resistant weeds. However, more recently, growers have reported difficulties in controlling several summer-germinating grass weeds with documented or suspected resistance to the spring and summer POST herbicide programs. In this context, research was conducted to evaluate a sequential PRE approach to control winter- and summer-germinating orchard weeds. Eight field experiments were conducted in tree nut orchards to evaluate the efficacy of common winter herbicide programs and a sequential herbicide program for control of a key summer grass weed species. In the sequential-application strategy, three foundational herbicide programs applied in the winter were either mixed with pendimethalin, followed with pendimethalin in March, or applied as a split application of pendimethalin in both winter and spring. Results indicate that the addition of pendimethalin enhanced summer grass weed control throughout the crop growing season by up to 31%. Applying all or part of the pendimethalin in the spring improved control of the summer grass weed junglerice by up to 49%. The lower rate of pendimethalin applied in the spring performed as well as the high rate in the winter, suggesting opportunities for reducing herbicide inputs. Tailoring sequential herbicide programs to address specific weed challenges can be a viable strategy for improving orchard weed control without increasing herbicide use in some situations.


1994 ◽  
Vol 8 (1) ◽  
pp. 23-27 ◽  
Author(s):  
David L. Jordan ◽  
John W. Wilcut ◽  
Leslie D. Fortner

Field experiments conducted in 1988 and 1989 evaluated clomazone alone and in a systems approach for weed control in peanut. Clomazone PPI at 0.8 kg ai/ha controlled common ragweed, prickly sida, spurred anoda, and tropic croton better than ethalfluralin and/or metolachlor applied PPI. POST application of acifluorfen plus bentazon was not needed to control these weeds when clomazone was used. Acifluorfen plus bentazon improved control of these weeds when clomazone was not used and generally were necessary to obtain peanut yields regardless of the soil-applied herbicides. Alachlor PRE did not improve clomazone control of any weed species evaluated. Fall panicum and large crabgrass control was similar with clomazone or clomazone plus ethalfluralin.


2015 ◽  
Vol 95 (5) ◽  
pp. 973-981 ◽  
Author(s):  
Amit J. Jhala ◽  
Mayank S. Malik ◽  
John B. Willis

Jhala, A. J., Malik, M. S. and Willis, J. B. 2015. Weed control and crop tolerance of micro-encapsulated acetochlor applied sequentially in glyphosate-resistant soybean. Can. J. Plant Sci. 95: 973–981. Acetochlor, an acetamide herbicide, has been used for many years for weed control in several crops, including soybean. Micro-encapsulated acetochlor has been recently registered for preplant (PP), pre-emergence (PRE), and post-emergence (POST) application in soybean in the United States. Information is not available regarding the sequential application of acetochlor for weed control and soybean tolerance. The objectives of this research were to determine the effect of application timing of micro-encapsulated acetochlor applied in tank-mixture with glyphosate in single or sequential applications for weed control in glyphosate-resistant soybean, and to determine its impact on soybean injury and yields. Field experiments were conducted at Clay Center, Nebraska, in 2012 and 2013, and at Waverly, Nebraska, in 2013. Acetochlor tank-mixed with glyphosate applied alone PP, PRE, or tank-mixed with flumioxazin, fomesafen, or sulfentrazone plus chlorimuron provided 99% control of common waterhemp, green foxtail, and velvetleaf at 15 d after planting (DAP); however, control declined to ≤40% at 100 DAP. Acetochlor tank-mixed with glyphosate applied PRE followed by early POST (V2 to V3 stage of soybean) or late POST (V4 to V5 stage) resulted in ≥90% control of common waterhemp and green foxtail, reduced weed density to ≤2 plants m−2 and biomass to ≤12 g m−2, and resulted in soybean yields >3775 kg ha−1. The sequential applications of glyphosate plus acetochlor applied PP followed by early POST or late POST resulted in equivalent weed control to the best herbicide combinations included in this study and soybean yield equivalent to the weed free control. Injury to soybean was <10% in each of the treatments evaluated. Micro-encapsulated acetochlor can be a good option for soybean growers for controlling grasses and small-seeded broadleaf weeds if applied in a PRE followed by POST herbicide program in tank-mixture with herbicides of other modes of action.


Author(s):  
Melih Yilar Omer Sozen ◽  
Ufuk Karadavut

This study was conducted to determine the effects of weed density and different weed control treatments on chickpea yield and yield components. The experiment was carried out in split plot design with 3 replications in experimental fields of Kirsehir Ahi Evran University during 2016 and 2017 crop seasons. Total nine treatments (no weed control, permanent weed control, one-time hoeing, two-time hoeing, three-time hoeing, herbicide application after emergence, one-time hoeing with herbicide application, two-time hoeing with herbicide application and three-time hoeing with herbicide application) were compared to know the most effective weed control method. Vaccaria pyramidata Medik., Sinapis arvensis L., Acroptilon repens L. weed species were found to be the most intense in the experimental area. All weed control applications had significant effect on chickpea yield and yield components compared to weedy plots. Three-time hoeing with herbicide application increased the yield by 361.55-478.50% compared to weedy plots. Likewise, three-time hoeing application even increased the yield by 348.50-357.09% compared to weedy plots. The results revealed that three-time hoeing with herbicide and three-time hoeing applications stood out in weed management to obtain a good yield in chickpea cultivation at Kirsehir province.


Author(s):  
Meijun Guo ◽  
Xi-e Song ◽  
Jie Shen ◽  
Jianming Wang ◽  
Xiatong Zhao ◽  
...  

Foxtail millet (Setaria italic [L.] P. Beauv.) is an important food and fodder crop that is cultivated worldwide. However, weeds severely inhibit the growth of spring foxtail millet, and no suitable herbicide or method is available for weed control in foxtail millet fields. Field experiments were conducted to evaluate the efficacy of various herbicides and their safety toward hybrid foxtail millet, that is, ‘Zhangzagu 10’. The present study was conducted using seven herbicides applied by precision orientation spraying between plastic mulches in a foxtail millet field. All herbicide treatments exhibited no significant difference on foxtail millet shoot and root biomass. No difference in grain yield was observed among herbicide treatments, including MCPA (2-methyl-4-chlorophenoxyacetic acid), mesotrione, acetochlor, trifluralin, and pendimethalin, at the recommended dosage in field efficacy evaluation trial. For the same herbicide, the tendency of weed control increased with the increase in herbicide concentration. Following this finding, all herbicides applied at the highest dosage controlled weeds by 92.06% compared with the other treatments utilizing lower concentration. At the same concentration level, mesotrione controlled all weed populations was the highest observed among all herbicides, followed by prometryne and MCPA. Mesotrione controlled all weeds by at least 76.85%, exhibiting the highest weed injury among the herbicides and satisfying the requirement for weed species control. Finally, comprehensive analyses showed that mesotrione at 0.8 L ha-1, yielded the highest comprehensive evaluation value in foxtail millet field. Thus, this herbicide can be a good option in controlling weeds in foxtail millet field. This new model can aid in protecting hybrid ‘Zhangzagu 10’ foxtail millet seeds or seedlings against herbicide damage and is a good option in expanding the application range of herbicide in foxtail millet.


Sign in / Sign up

Export Citation Format

Share Document