scholarly journals (35) The Influence of 1-MCP on Firmness, Soluble Sugar Levels, Chlorogenic Acid, and Total Phenolic Compounds in Ripening Banana Fruit

HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1005B-1005
Author(s):  
Daniel A. Stanley ◽  
Donald J. Huber

In previous studies, 1-methylcyclopropene (1-MCP) was shown to significantly suppress peel degreening and appearance of senescent spotting of banana fruit (Stanley and Huber, 2004). In the present study, the effect of the ethylene antagonist on banana pulp soluble sugar levels and on peel soluble and total phenolics was measured. One hundred and sixty hands (10 boxes) of banana fruit (Musaacuminata cv. Cavendish) were treated with ethylene (300 μL·L-1, 24 h, 15 °C, 90% RH) at a commercial ripening facility in Bradenton, Fla., and transported by truck (15 °C) to the University of Florida. Fruit were sorted and placed in 174-L ripening chambers, where 80 hands received 500 nL·L-1 1-MCP for two 12-h periods at 18 °C, while the other 80 hands (controls) were maintained in identical containers without 1-MCP for equal time periods at 18 °C. Mean whole fruit firmness in both treatment groups was 140 N and decreased to 15 N (controls) and 30 N (1-MCP) by day 12. Soluble sugars in the pulp of control fruit achieved levels between 160–180 mg·g-1 fresh weight by day 8, while 1-MCP treated fruit required about 12 days to achieve similar soluble sugar levels. Total phenolic compounds present in peel tissue of control and 1-MCP treated fruit required 10 and 14 days, respectively, to achieve levels of about 4000 μg·g-1 fresh weight. Chlorogenic acid levels, a subset of total peel phenolic compounds, peaked above 500 μg·g-1 by day 10 in control fruit and by day 12 in 1-MCP treated fruit. Maintenance of fruit firmness along with the achievement of acceptable sugar levels of 1-MCP treated fruit demonstrate possible benefits of suppression of ethylene action for retail and processing markets for banana fruit.

Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 4884
Author(s):  
Khadijeh Yasaminshirazi ◽  
Jens Hartung ◽  
Michael Fleck ◽  
Simone Graeff-Hoenninger

The growing interest of consumers in healthy organic products has increased the attention to the organic production of beetroot. In this regard, six field experiments were conducted in 2017 and 2018 in three different locations under the specific conditions of organic agriculture, and fifteen beetroot genotypes, including one F1 hybrid as a commercial control and one breeding line, were compared regarding the content of the total dry matter, total soluble sugar, nitrate, betalain, and total phenolic compounds in order to investigate the genetic potential of new and existing open-pollinated genotypes of beetroot regarding the content of their bioactive compounds. The results of this study indicated a significant impact of genotype (p < 0.05) on all measured compounds. Furthermore, results revealed a significant influence of the interactions of location × year (p < 0.05) on the beetroot composition, and, thus, the role of environmental conditions for the formation of tested compounds. The total dry matter content (TDMC) of beetroots varied between 14.12% and 17.50%. The genotype ‘Nochowski’, which possessed the highest total soluble sugar content with 14.67 °Bx (Brix), was among the genotypes with the lowest nitrate content. On the contrary, the cylindrical-shaped genotype ‘Carillon RZ’ (Rijk Zwaan), indicated the lowest sugar content and the highest nitrate concentration. The amount of total phenolic compounds ranged between 352.46 ± 28.24 mg GAE 100 g−1 DW (milligrams of gallic acid equivalents per 100 g of dry weight) and 489.06 ± 28.24 mg GAE 100 g−1 DW for the red-colored genotypes which is correlated with the high antioxidant capacity of the investigated genotypes. Due to the specifics of the required content of bioactive compounds for various products, the selection of suitable genotypes should be aligned with the intended final utilization.


2016 ◽  
Vol 2 (1) ◽  
pp. 121-130 ◽  
Author(s):  
Md Moniruzzaman Sohag Howlader ◽  
Sheikh Rashel Ahmed ◽  
Khadizatul Kubra ◽  
Md Khairul Hassan Bhuiyan

The present study was aimed to evaluate biochemical and phytotochemical of dry leaves of Stevia rebaudiana. Biochemical analysis indicated that Stevia leaves are a good source of carbohydrate and reducing sugar. Different extraction methods were used to prepare four different dry extracts (Extract A, B, C, D). Total soluble sugars and reducing sugars were analyzed for these four dry extracts and commercial Stevia powder. The highest amount of total soluble sugar (477 mg sugar g-1 dry extract) was obtained from extract C and higher amount of reducing sugar (82 mg g-1 dry extract) was obtained from extract D among the extracts. But commercial Stevia powder showed higher total soluble sugar content (754 mg g-1 dry powder) and highest amount of reducing sugar (98 mg g-1 dry extract) than all the extracted dry samples. The extraction process of dry extract C was feasible for the extraction of total soluble sugar. For the phytochemical screening, crude extract was tested for the presence of different chemical groups and presence of alkaloids, phenolic compounds, steroids, tannins, flavonoids, cardiac glycosides and saponins that were identified. The highest amount of total phenolic compounds (92 mg) was recorded from methanolic extract of extraction B. The lowest amount of total phenolic compounds (36 mg) was recorded in ethanolic extract of extraction A. So, Methanol proved as best solvent to extract increased quantity of total phenolic compounds than other solvents.Asian J. Med. Biol. Res. March 2016, 2(1): 121-130


2013 ◽  
Vol 34 (2) ◽  
pp. 277-284
Author(s):  
Jan Piotrowski ◽  
Marian Milczak

The contents of total phenolic compounds, chlorogenic acid and peroxidase activity as well as monophenols to polyphenols ratio were studies in the suckers of the hops as indices of resistance to <i>Verticillium albo-atrum</i> and <i>Fusarium sambucinum</i>. The suckers of hop taken in the early spring from the healthy and infected plots were used in the experiments. As a research material were included cv. 'Northern Brewer' - a wilt tolerant variety, two wild susceptible varieties - cv. 'Lubelski' and cv. 'Brewers Gold', four breeding clones and one male plant. It was found that, 'Northern Brewer' contains more total phenolic compounds, rnonophenols and chlorogenic acid, and in particular considerably higher peroxidase activity as compared to cv. 'Lubelski'. Taking into consideration the contents of these compounds, in the majority of cases, the new breeding clones were similar to the mother variety 'Northern Brewer'. It seems resonable to assume, that the new clones should be more wilt tolerant than varieties and populations cultivated in our country.


2018 ◽  
Vol 40 (5) ◽  
Author(s):  
Tatiane de Oliveira Tokairin ◽  
Aline Priscilla Gomes da Silva ◽  
Poliana Cristina Spricigo ◽  
Severino Matias de Alencar ◽  
Angelo Pedro Jacomino

Abstract The Atlantic Forest is recognized as a biome rich in biodiversity. Cambuci trees (Campomanesia phaea) produce fruits that may be consumed as both fresh and processed forms but are still underutilized. The aim of this study was to describe the physicochemical characteristics and bioactive compounds in cambuci fruits from Brazilian Atlantic Forest, located at Natividade da Serra-SP, Brazil. Cambuci fruits of the fifty-nine accessions were characterized according to fresh weight, pulp yield, peel percentage, longitudinal and transversal diameters (LD and TD, respectively), pH, soluble solids content (SSC), titratable acidity (TA), SSC/TA ratio, ascorbic acid, total phenolic compounds content, and antioxidant activity using the DPPH assay. The soluble solids contents varied from 5.10 °Brix to 11.00 °Brix. The titratable acidity varied from 1.29 to 2.90 g citric acid 100 g-1. Ascorbic acid content was of 31.12 to 139.38 mg 100 g-1. Total phenolic compounds varied from 330.5 mg GAE 100 g-1 to 3,526.04 mg GAE 100 g-1. The antioxidant activity was of 65.03 µmol Trolox g-1 fruit pulp (fresh weight) to 199.78 µmol Trolox g-1 fruit pulp (fresh weight), a factor of 6.7 difference between the extremes. These results showed cambuci fruits presented as rich source of ascorbic acid, total phenolic compounds, and with high antioxidant capacity.


2021 ◽  
Vol 5 ◽  
Author(s):  
Seda Kayahan ◽  
Didem Saloglu

The objective of this work was to determine the total phenolic compounds and antioxidants in raw and cooked Sakiz and Bayrampasa variety artichokes in parts such as inner bracts, stems, receptacles, and outer bracts. The artichokes were cooked by boiling, microwaving, and baking methods, and total phenolic compounds and antioxidants of cooked artichokes were evaluated. While TPC (total phenolic content), DPPH (2,2-diphenyl-1-picryl-hydrazine), and CUPRAC values for the leaves of raw Bayrampasa artichoke were found to be 686 mg gallic acid equivalent (GAE)/100 g, 478 mg TE/100 g, and 4,875 mg TE/100 g, respectively, TPC, DPPH, and CUPRAC values for stems of Sakiz artichoke were determined to be 1,579 mg GAE/100 g, 1,259 mg TE/100 g, and 3,575 mg TE/100 g. A significant increase in the content of TPC, DPPH, and CUPRAC values was observed for all cooking applications of both artichokes. DPPH and CUPRAC values increased by 11 and 43 times and 17 and 6.7 times after baking of Sakiz and microwave cooking of Bayrampasa, respectively. Chlorogenic acid, cynarine, and cynaroside content of both artichokes had an increment after all cooking applications. Chlorogenic acid content was improved 29 and 58 times after baking of Sakiz and microwave cooking of Bayrampasa, respectively.


2012 ◽  
Vol 64 (1) ◽  
pp. 65-72 ◽  
Author(s):  
Irena Perucka ◽  
Katarzyna Olszówka

The aim of the presented study was to determine the effect of foliar application of CaCl<sub>2</sub> on the level of β-carotene, lutein, tocopherols and phenolic compounds in the leaves of lettuce cv. Omega (<i>Lactuca sativa</i> L.). The experiments were conducted in the greenhouse of the Faculty of Cultivation and Fertilisation of Horticultural Plants, University of Life Sciences in Lublin. During the growing period, 7 and 14 days before harvest, the plants were treated with a solution of CaCl<sub>2</sub> with concentrations of 0.1 M and 0.2 M. Plants sprayed with water were the control treatment in the experiment. Analyses were performed on whole leaves and the blade without midrib. The obtained results indicate that the leaves of lettuce cv. Omega are a good source of phenolic compounds, carotenoids and tocopherols. The dominant carotenoid in lettuce cv. Omega was β-carotene. Foliar application of CaCl<sub>2</sub> on the plants did not have any significant effect on the level of β-carotene and lutein in the whole leaves. The contents of tocopherols, total phenolic compounds and chlorogenic acid were dependent on the concentration of CaCl<sub>2</sub>. The application of 0.1 M CaCl<sub>2</sub> solution in the plants resulted in a decrease in the level of total phenolic compounds and chlorogenic acid, and an increase in tocopherol content. However, the treatment of the plants with 0.2M CaCl<sub>2</sub> solution caused a lowering of the concentration of tocopherols and an increase in the content of chlorogenic acid and total phenolic compounds.


2020 ◽  
Vol 3 (1) ◽  
pp. 47
Author(s):  
Nadezhda Petkova ◽  
Manol Ognyanov ◽  
Blaga Inyutin ◽  
Petar Zhelev ◽  
Panteley Denev

Crab apple (Malus baccata (L.) Borkh.) was mainly distributed in Europe as an ornamental plant, but the nutritional properties of its edible fruits were not fully revealed. The aim of the current study was to characterize the phytochemical composition of ripen carb apple fruits and to evaluate their nutritional and antioxidant potentials. The fruits were assayed for moisture and ash content, proteins, lipids, carbohydrates, titratable acidity (TA), pH, total phenolic compounds and natural pigments. Among the analyzed carbohydrates cellulose was found in the highest content (6% dw), followed by sugars (sucrose, glucose and fructose) and 1.8 % dw uronic acids. The total chlorophylls and carotenoids contents in their fruits were 6.51 and 4.80 μg/g fw, respectively. Total monomeric anthocyanins were not detected. The highest content of total phenolic compounds (2.67 mg GAE/g fw) was found in 95 % ethanol extract from fruits, while the total flavonoids were relatively low – 0.1 mg QE/g fw. DPPH assay (17.27 mM TE/g fw) and FRAP assay (14.34 mM TE/g fw) demonstrated in vitro antioxidant activities of crabapple. Malus baccata fruits were evaluated as a rich source of dietary fibers and phenolic compounds with significant antioxidant potential that could be used in human nutrition.


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 398
Author(s):  
Muneera D. F. AlKahtani ◽  
Yaser M. Hafez ◽  
Kotb Attia ◽  
Emadeldeen Rashwan ◽  
Latifa Al Husnain ◽  
...  

Drought stress deleteriously affects growth, development and productivity in plants. So, we examined the silicon effect (2 mmol) and proline (10 mmol) individually or the combination (Si + proline) in alleviating the harmful effect of drought on total phenolic compounds, reactive oxygen species (ROS), chlorophyll concentration and antioxidant enzymes as well as yield parameters of drought-stressed sugar beet plants during 2018/2019 and 2019/2020 seasons. Our findings indicated that the root diameter and length (cm), root and shoot fresh weights (g plant−1) as well as root and sugar yield significantly decreased in sugar beet plants under drought. Relative water content (RWC), nitrogen (N), phosphorus (P) and potassium (K) contents and chlorophyll (Chl) concentration considerably reduced in stressed sugar beet plants that compared with control in both seasons. Nonetheless, lipid peroxidation (MDA), electrolyte leakage (EL), hydrogen peroxide (H2O2) and superoxide (O2●−) considerably elevated as signals of drought. Drought-stressed sugar beet plants showed an increase in proline accumulation, total phenolic compounds and up-regulation of antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD) activity to mitigate drought effects. Si and proline individually or the combination Si + proline considerably increased root and sugar yield, sucrose%, Chl concentration and RWC, MDA and EL were remarkably reduced. The treatments led to adjust proline and total phenolic compounds as well as CAT and SOD activity in stressed sugar beet plants. We concluded that application of Si + proline under drought stress led to improve the resistance of sugar beet by regulating of proline, antioxidant enzymes, phenolic compounds and improving RWC, Chl concentration and Nitrogen, Phosphorus and Potassium (NPK) contents as well as yield parameters.


Sign in / Sign up

Export Citation Format

Share Document