scholarly journals (168) Phospholipase Dα and Lipoxygenase Gene Expression in Fruit, Floral, and Vegetative Tissues of `Honey Brew' Hybrid Honeydew Melon

HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 1081B-1081
Author(s):  
Bruce D. Whitaker ◽  
Gene E. Lester

Increases in phospholipase D (PLD) and lipoxygenase (LOX) activities are thought to play a key role in senescence of mesocarp tissues in muskmelon fruit. We have cloned and characterized two full-length cDNAs, CmPLDα and CmLOX1, encoding PLDα and LOX proteins in honeydew melon (Cucumis melo L. Inodorus Group). Levels of expression of the corresponding genes were determined by semi-quantitative RT-PCR in developing and mature fruit mesocarp tissues (20–60 d after pollination; DAP), and in roots, leaves, and stems from 4-week-old and flowers from 6-week-old plants. The coding regions of CmPLDα1 and CmLOX1 cDNAs are, respectively, 2427 and 2634 nucleotides long, encoding proteins 808 and 877 amino acids in length. CmPLDα1 is most similar to PLDα genes in castor bean, cowpea, strawberry, and tomato (77% nucleotide identity), and is the first cucurbit PLD gene cloned. CmLOX1 has 94% nucleotide identity to a cucumber LOX gene expressed in roots and 80% identity to cucumber cotyledon lipid body LOX. Transcript of CmPLDα1 was much more abundant than that of CmLOX1, but relative levels of transcript in the various organs and tissues were similar for the two genes. Expression was highest in roots, flowers, and fruit mesocarp tissues. CmPLDα1 expression in fruit was high throughout development, although maximum levels occurred at 50 and 55 DAP, respectively, in middle and hypodermal mesocarp. CmLOX1 expression was generally higher in middle than in hypodermal mesocarp with maximum transcript levels at 55 and 50 DAP, respectively. Overall, the patterns of expression of CmPLDα1 and CmLOX1 are consistent with a model in which their encoded enzymes act in tandem to promote or accelerate senescence in fruit mesocarp tissues.

2006 ◽  
Vol 131 (4) ◽  
pp. 544-550 ◽  
Author(s):  
Bruce D. Whitaker ◽  
Gene E. Lester

Increases in phospholipase D [PLD (EC 3.1.4.4)] and lipoxygenase [LOX (EC 1.13.11.12)] activities are thought to play a critical role in senescence of mesocarp tissues in netted and nonnetted muskmelon (Cucumis melo L.) fruits. We have cloned and characterized two full-length cDNAs, CmPLDα1 and CmLOX1, encoding PLDα and LOX proteins in honeydew melon (C. melo Inodorus Group cv. Honey Brew). Relative levels of expression of the corresponding genes were determined by semi-quantitative RT-PCR in developing and mature fruit mesocarp tissues [20-60 d after pollination (DAP)], as well as in roots, leaves, and stems from 4-week-old and flowers from 6- to 7-week-old plants. The coding regions of CmPLDα1 and CmLOX1 cDNAs are, respectively, 2427 and 2634 nucleotides long, encoding proteins 808 and 877 amino acids in length. CmPLDα1 is very similar to PLDα genes from castor bean (Ricinis communis L.), cowpea (Vigna unguiculata L.), strawberry (Fragaria ×ananassa Duch.) and tomato (Lycopersicon esculentum Mill.) (77% nucleotide identity), and is the first PLD gene cloned from a cucurbit species. CmLOX1 has 94% nucleotide identity to a cucumber (Cucumis sativus L.) LOX gene expressed in roots and 80% identity to cucumber cotyledon lipid body LOX. In general, transcript of CmPLDα1 was much more abundant than that of CmLOX1, but relative levels of transcript in the various organs and tissues were similar for the two genes. Expression was highest in roots, flowers, and fruit mesocarp tissues. CmPLDα1 expression in fruit was essentially constitutive throughout development, although maximum levels occurred at 50 and 55 DAP, respectively, in middle and hypodermal mesocarp. CmLOX1 expression was generally higher in middle than in hypodermal mesocarp with maximum transcript levels occurring at 55 and 50 DAP, respectively. Overall, the patterns of expression of CmPLDα1 and CmLOX1 are consistent with a model in which their encoded enzymes act in tandem to promote or accelerate senescence in fruit mesocarp tissues.


Author(s):  
Pedro Valadez-Ramírez ◽  
Javier Paz-Román ◽  
Salvador Guzmán-González ◽  
Marco Tulio Buenrostro-Nava ◽  
Daniel Leobardo Ochoa-Martínez

El <em>Cucumber mosaic virus</em> (CMV) ocasiona una de las enfermedades virales más importantes a nivel mundial en plantas silvestres y cultivadas. En México son pocos los estudios que se han abordado con este virus, y dada su amplia gama de hospedantes e impacto económico, es necesario contar con mayor información de su presencia y distribución en zonas de importancia agrícola como las del estado de Colima. En este trabajo, se reportan nuevos aislamientos del CMV identificados por RT-PCR, secuenciación de DNA y su análisis filogenético: CMV-Vin en vinca (<em>Catharanthus roseus</em>), CMV-Chi en chile jalapeño (<em>Capsicum annuum</em>) y CMV-Tom en tomate saladette (<em>Solanum lycopersicum</em>). Se confirmó, además, la presencia del CMV en melón cantaloupe (<em>Cucumis melo</em>) (CMV-Mel). Los aislamientos CMV-Vin, CMV-Chi y CMV-Mel agruparon en el subgrupo IB, mientras que CMV-Tom agrupó en el subgrupo IA de CMV. De estos aislamientos, sólo CMV-Vin evidenció la presencia de un RNA satélite (satRNA Vin) sin dominio necrogénico. Este es el primer reporte de la presencia del CMV en vinca, chile y tomate y de un RNA satélite en vinca en Colima, México.


2010 ◽  
Vol 17 (4) ◽  
pp. 389-396 ◽  
Author(s):  
Rinze F Neuteboom ◽  
Evert Verbraak ◽  
Annet F Wierenga-Wolf ◽  
Jane SA Voerman ◽  
Marjan van Meurs ◽  
...  

Background: During the third trimester of pregnancy multiple sclerosis (MS) disease activity is reduced. It is not fully understood which factors mediate this disease amelioration.Objective: To study alterations of the monocyte transcriptome during pregnancy in MS patients, using a genomewide approach to identify differentially regulated genes.Methods: Women with MS and healthy controls were longitudinally studied, including a visit before pregnancy.Results: RNA-microarray analysis was performed in six patients. We found a significant increase of CD64 (Fc gamma receptor 1a, FcgR1a) during the third trimester compared with baseline, confirmed by RT-PCR in a group of ten patients. Analysis with Ingenuity software was performed using all genes expression of which was altered at least 1.5-fold in at least five out of six patients. Major networks that were altered during MS pregnancy were: cell-to-cell signalling and interaction, immune response, and cell signalling. From the genes selected for Ingenuity analysis, seven additional candidate genes, selected for their biological interest, were tested using RT-PCR in ten patients with MS and nine controls. We found an increased expression of JAK2 and STAT1 directly postpartum in patients with MS and in controls.Conclusion: The increased CD64 expression during pregnancy is indicative of enhanced innate immune functions.


Plant Disease ◽  
2011 ◽  
Vol 95 (11) ◽  
pp. 1484-1484 ◽  
Author(s):  
Z. Perez-Egusquiza ◽  
L. W. Liefting ◽  
S. Veerakone ◽  
G. R. G. Clover ◽  
M. Ciuffo

The genus Fuchsia has 110 known species and numerous hybrids. These ornamental plants with brightly colored flowers originate from Central and South America, New Zealand, and Tahiti, but a wider variety are now grown all over the world. Few viruses have been reported in Fuchsia spp.: a carlavirus, Fuchsia latent virus (FLV) (1–3), a cucumovirus, Cucumber mosaic virus (CMV) (3), and two tospoviruses, Impatiens necrotic spot virus (INSV) and Tomato spotted wilt virus (TSWV) (4). In August 2009, five plants, each representing a different cultivar of Fuchsia hybrid, from home gardens in the Auckland and Southland regions of New Zealand, displayed variable symptoms including mild chlorosis, mild mottle, or purple spots on leaves. Plants tested negative for CMV, INSV, and TSWV using commercial ImmunoStrips (Agdia Inc., Elkhart, IN); however, flexuous particles of ~650 to 700 nm were found by electron microscopy in all samples. Local lesions were also observed on Chenopodium quinoa plants 4 weeks after sap inoculation. Total RNA was extracted from all plants with a RNeasy Plant Mini Kit (Qiagen Inc., Doncaster, Australia) and tested by reverse transcription (RT)-PCR using two generic sets of primers (R. van der Vlugt, personal communication) designed to amplify fragments of ~730 and 550 bp of the replicase and coat protein genes of carlaviruses, respectively. Amplicons of the expected size were obtained for all samples, cloned, and at least three clones per sample were sequenced. No differences within clones from the same samples were observed (GenBank Accession Nos. HQ197672 to HQ197681). A BLASTn search of the viral replicase fragment showed the highest nucleotide identity (76%) to Potato rough dwarf virus (PRDV) (EU020009), whereas the coat protein fragment had maximum nucleotide identity (70 to 72%) to PRDV (EU020009 and DQ640311) and Potato virus P (DQ516055). Sequences obtained were also pairwise aligned using the MegAlign program (DNASTAR, Inc., Madison, WI) and results showed that the isolates had 83 to 97% identity to each other within each genome region. Further sequences (HQ197925 and HQ197926) were obtained from a Fuchsia plant originating from Belgium, a BLASTn analysis showed high nucleotide identity (84 to 99%) to the New Zealand isolates. The low genetic identity to other Carlavirus members suggests that these isolates belong to a different species from those previously sequenced. On the basis of electron microscopy and herbaceous indexing, the isolates had similar characteristics to a carlavirus reported from Fuchsia in Italy (1) and FLV reported in Canada (2). The Italian carlavirus isolate was obtained and tested with the same primers by RT-PCR. Pairwise analysis of the Italian sequences (HQ197927 and HQ197928) with the New Zealand and Belgian sequences showed between 84 and 95% similarity within each genome region. These results suggest that the carlavirus infecting these plants is the same virus, possibly FLV. To our knowledge, this is the first report of this carlavirus infecting Fuchsia spp. in New Zealand, but the virus has probably been present for some time in this country and is likely to be distributed worldwide. References: (1) G. Dellavalle et al. Acta Hortic. 432:332, 1996. (2) L. J. John et al. Acta Hortic. 110:195, 1980. (3) P. Roggero et al. Plant Pathol. 49:802, 2000. (4) R. Wick and B. Dicklow. Diseases in Fuchsia. Common Names of Plant Diseases. Online publication. The American Phytopathological Society, St. Paul, MN, 1999.


Plant Disease ◽  
2011 ◽  
Vol 95 (11) ◽  
pp. 1483-1483 ◽  
Author(s):  
J.-H. Cai ◽  
B.-X. Qin ◽  
X.-P. Wei ◽  
J. Huang ◽  
W.-L. Zhou ◽  
...  

In Guangxi Province of southwest China, diseases caused by Tospoviruses (family Bunyaviridae) pose a serious threat to tobacco (Nicotiana tobacum) production. During surveys conducted annually at Xinrong Village in Jingxi County from 2008 to 2010, more than 130 ha of fields were found to have 10 to 50% of plants exhibiting symptoms similar to spotted wilt caused by Tomato spotted wilt virus (TSWV). During this period, disease symptoms at similar prevalence and incidence were also found at Fushan, Debao County in most of the cultivars produced in these areas, including Yunyan 85, 87, 92, 97, and K326. Symptoms on tobacco varied but commonly included dwarfing, midrib browning, distorted apical buds, and concentric ringspots that coalesced to form large areas of dead leaf tissue. Mechanical inoculation from diseased tobacco leaves with concentric ringspots back to tobacco cv. Yunyan 85 or 87, resulted in 12 of 16 plants with symptoms similar to those observed in the field. No symptoms on plants developed following inoculation with buffer only. Symptoms found in the field resembled those caused by TSWV. However, testing using TSWV-specific antiserum was shown to be negative by double-antibody sandwich-ELISA (Agdia, Elkhart, IN). Total RNA was extracted from 27 diseased tobacco plants collected from different regions in Guangxi using Trizol reagent (Invitrogen, Carlsbad, CA) according to the manufacturer's instructions. RNA extracts were amplified by reverse transcription (RT)-PCR using the degenerate primers T2740 (ATGGGDATNTTTGATTTCATG) and T3920c (TCATGCTCATSAGRTAAATYTCTCT) designed to target the partial RNA-dependent RNA polymerase (RdRp) sequence of members in the genus Tospovirus (3). Amplification was performed at 42°C for 60 min, followed by 35 cycles of PCR (30 s denaturation at 94°C, 45 s annealing at 55°C, and 30 s extension at 72°C) and a 7-min final extension at 72°C. A PCR product of approximately 1.2 kb was amplified from 21 diseased plants. RT-PCR amplicons were cloned into the pUC19-T Simple Vector (TaKaRa, Dalian, China) and sequenced in both directions. Sequences were assembled and analyzed by DNAStar 5.01 (DNASTAR, Madison, WI). Sequences of representative isolates were deposited in GenBank (Accession Nos. JN020022 to JN020027). The 1.2-kb partial RdRp sequences of these isolates were shown to have 94.4 to 95.3% nucleotide identity and 96.5 to 97.5% amino acids identity to Tomato zonate spot virus (TZSV) (GenBank Accession No. NC_010491) (1). Among these TZSV isolates from Guangxi, the partial RdRp sequences have 98.0 to 99.4% nucleotide identity and 98.8 to 100% amino acids identity with each other. The presence of TZSV was further confirmed in diseased tobacco plants by indirect ELISA using antiserum of TZSV (provided by Prof. Zhongkai Zhang, Agricultural Academy of Yunnan, China). TZSV has been characterized as a novel tospovirus on various hosts including tobacco in Yunnan province (1,2). To our knowledge, this is the first report of TZSV-associated disease on tobacco in Guangxi Province, southwest China. Further work is necessary to study the epidemiology and management of the disease. References: (1) J. Dong et al. Arch. Virol. 153:855, 2008. (2) J. Dong et al. J. Insect Sci. 10:166, 2010. (3) Y. Lin. Master Thesis. National Chung Hsing University, Taichung, Taiwan, Republic of China, 2007.


2013 ◽  
Vol 746 ◽  
pp. 53-57 ◽  
Author(s):  
Yu Qiao ◽  
Xue Jiao Meng ◽  
Xiao Xia Jin ◽  
Guo Hua Ding

Phenylpropanoid metabolism is an important secondary metabolism pathway in plants. Lignin, as a secondary metabolite was produced by secondary metabolism pathway, plays important roles on disease resistance in plants. PAL, C4H, and CHS are key enzymes involved in the secondary metabolism pathway and critical on disease resistance. We hypothesize that the expression of key enzymes of secondary metabolism pathway will be affected by abnormal environmental conditions; therefore provide the resistance to severe environment for plant. In this study, we analysed the gene expressions of PAL, C4H, and CHS under higher temperature and infection of germ (Pseudoperonosporacubensis) in Cucumber JingChun No.4, which is highly resistant to downy mildew. The gene expressions were quantified by semi-quantitative RT-PCR. Our results showed that the expression of C4H was consistently higher and not affected by germ inoculation. However, the expressions of PAL and CHS were increased at 2 h and 25 h, respectively, after inoculating with germs. Interestingly, we found that the expressions of all these three genes were decreased with treatment of higher temperature. Our results demonstrated that PAL, C4H and CSH are important in secondary metabolism and affect the potential resistant ability of plant to various severe growing environments.


2007 ◽  
Vol 59 (3) ◽  
pp. 654-659 ◽  
Author(s):  
J.G. Castilho ◽  
P.E. Brandão ◽  
P. Carnieli Jr ◽  
R.N. Oliveira ◽  
C.I. Macedo ◽  
...  

Eleven central-nervous-system samples collected from stray dogs between 2000 and 2004 were found positive by RT-PCR, which amplified a 480bp fragment of the N gene of canine distemper virus (CDV). Phylogenetic analysis based on partial N-gene sequences showed four major clusters. All dog strains segregated into cluster I, with a mean nucleotide identity of 95.8% and 95.6% with the Onderstepoort and Lederle vaccine strains, respectively. Cluster II contained all the raccoon-related strains, cluster III Orient strains and Cluster IV the Onderstepoort and Lederle vaccine strains, with a mean nucleotide identity of 99.7% between them. This is the first report of phylogenetic analysis of CDV strains in Brazil.


2000 ◽  
Vol 17 (3) ◽  
pp. 124-127
Author(s):  
Yosuke Kawase ◽  
Ayako Moriki ◽  
Yoshiaki Minato ◽  
Seizo Hamano ◽  
Kiyoshi Matsukawa ◽  
...  

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A70-A71
Author(s):  
Thais Barabba Auricino ◽  
Eduarda Correa Bento ◽  
Claudimara Ferini Pacicco Lotfi

Abstract Previously, we showed that the histological markers of the mice X-zone of adrenal cortex were still present in adult male and female postpartum SF1/SOCS3KO mice. Abnormal distribution of lipid droplets along the adrenal cortex and reduced ACTH-induced corticosterone secretion were observed in SF1/SOCS3KO mice (1). Here we have examined the adrenals of the SF1/SOCS3KO male and virgin female at 3, 8, 15 and 30 weeks through morphological and molecular analysis. Hematoxylin-eosin stains showed X-zone retention in the SF1/SOCS3KO mice adrenals regardless of the postnatal age analyzed. CYP17A1-positive cells were immunolocalized in the X-zone of SF1/SOCS3KO mice that were confirmed by immunoblotting. A fetal adrenal enhancer (FAdE) and Pik3c2g and 20αHSD genes expression were analyzed by RT-PCR, and these genes were present in the male SF1/SOCS3KO mice up to the age of 8 and 15 weeks, but not in the control mice. Therefore, we showed retention of X-zone in the adrenal cortex of SOCS3KO mice up to the age of 30 week, which suggest the involvement of JAK/STAT/SOCS3 signaling pathway in the differentiation process of adrenal cortex. Reference: (1) Pedroso et al., J Endocrinol.2017 Dec;235(3):207–222.


Author(s):  
Ishaka Aminu ◽  
Aliyu Abubakar Gambo ◽  
Muhammad Hassan Yankuzo

Introduction: Owing to increase demand for safer and health promoting vegetable oils, a number of potential sources are being explored by researchers. Materials and Methods: In this study, oil was extracted using Soxhlet from Sokoto locally grown Cucumis melo L (honeydew melon). Physical and chemical properties (colour, moisture, pH, specific gravity, refractive index, acid value, iodine value, saponification value and peroxide value) of the oil were determined using standard analytical methods by Association of Official Analytical Chemists (AOAC). Results: The results showed the percentage yield of the oil to be 27.46%. Physically, the oil was yellowish in colour, liquid at room temperature, with pH of 6.2 (0.01), specific gravity of 0.89 (0.32), and refractive index of 3.62 (1.0). The saponification, acid, iodine and peroxide values of the oil were 45.81 (5.19), 9.16 (0.21), 64.80 (4.31) and 10.50 (1.50) respectively. Conclusion: The results suggest that the oil has a potential for use as vegetable oil, in industries and, subject to further evaluation of the contents, health promoting purposes.


Sign in / Sign up

Export Citation Format

Share Document