scholarly journals Quantifying the Acidic and Basic Effects of Vegetable and Herb Species in Peat-based Substrate and Hydroponics

HortScience ◽  
2019 ◽  
Vol 54 (6) ◽  
pp. 1093-1100 ◽  
Author(s):  
Ryan W. Dickson ◽  
Paul R. Fisher

Objectives were 1) to quantify acidic and basic effects on the root zone pH for eight vegetable and herb species grown in peat-based substrate and hydroponic nutrient solution and 2) to determine the applied NH4+:NO3– ratio expected to have a neutral pH reaction for each species during its vegetative growth phase. In one experiment, plants were grown for 33 days in substrate (70% peat:30% perlite by volume), and were fertilized with a nutrient solution containing 7.14 milli-equivalents (mEq)·L–1 N and NH4+:NO3– ratios ranging from 0:100 to 40:60. During the second experiment, the same species were grown in hydroponic nutrient solutions at 7.14 mEq·L–1 N with NH4+:NO3– ratios ranging from 0:100 to 30:70, and data were collected over a 6-day period. In substrate, species increased root zone pH when supplied 0:100 solution, except for cucumber, which did not change substrate pH. Increasing the NH4+:NO3– ratio to 40:60 increased acidity and decreased pH across species. Similar trends were observed in hydroponics, in which the most basic response occurred across species with 0:100, and the most acidic response occurred with 30:70. Arugula was the only species that increased root zone pH with all three NH4+:NO3– ratios in substrate and hydroponics. In substrate and hydroponics, mEq of acidity (negative) or basicity (positive) produced per gram dry weight gain per plant (mEq·g−1) correlated positively with mEq·g−1 net cation minus anion uptake, respectively, in which greater cation uptake resulted in acidity and greater anion uptake resulted in basicity. In hydroponics, the greatest net anion uptake occurred with 0:100, and increasing the NH4+:NO3– ratio increased total cation uptake across species. Cucumber had the most acidic effect and required less than 10% of N as NH4+-N for a neutral pH over time, arugula was the most basic and required more than 20% NH4+-N, and the remaining species had neutral percent NH4+-N between 10% and 20% of N. Increasing the NH4+:NO3– ratio decreased Ca2+ uptake across all species in hydroponics, which could potentially impact tip burn and postharvest quality negatively. Controlling root zone pH in substrate and hydroponic culture requires regular pH monitoring in combination with NH4+:NO3– adjustments and other pH management strategies, such as injecting mineral acid to neutralize irrigation water alkalinity or adjusting the limestone incorporation rate for substrate.

2016 ◽  
Vol 1 (1) ◽  
pp. 28
Author(s):  
Rully Dyah Purwati ◽  
. Marjani

<p>Penelitian bertujuan untuk mendapatkan informasi ketahanan plasma nutfah kenaf pada lingkungan konsentrasi Fe yang ekstrim dan pH masam telah dilaksanakan di Laboratorium dan Rumah Kaca Pemuliaan Balittas, Malang, mulai bulan Januari–Desember 2008. Penelitian dilaksanakan dengan menggunakan ran-cangan acak kelompok yang diulang 3 kali. Bahan penelitian terdiri dari 100 aksesi kenaf yang diuji di labo-ratorium pada tingkat bibit. Pada setiap ulangan, masing-masing aksesi kenaf diuji sebanyak 20 bibit ber-umur 3–4 hari, yang ditanam pada stereo-<em>foam</em> berlapiskan kasa strimin. Bibit dipelihara pada larutan nu-trien ”<em>Yoshida”</em> dan diberi perlakuan konsentrasi unsur Fe 350 ppm dan pH 4. Sebagai pembanding diguna-kan nutrien yang sama dengan konsentrasi Fe = 0 ppm dan pH netral. Pengamatan dilakukan terhadap pan-jang akar, panjang hipokotil, berat kering akar, dan berat kering hipokotil. Hasil penelitian menunjukkan bahwa ketahanan 100 aksesi kenaf yang diuji terhadap kelebihan Fe pada pH masam bervariasi; tetapi ada 8 aksesi yang tergolong tahan, yaitu aksesi nomer 449, 461, 476, 782, 785, 833, 836, dan 839.</p><p>The objective of this experiment was to find out information of kenaf germplasm resistance to high Fe con-centration and low pH of media. The experiment was conducted in laboratory and green house of plant breeding division, IToFCRI, Malang from January to December 2008. The experiment was designed in ran-domized block design with three replications. One hundred accessions of kenaf seedlings were evaluated in laboratory. Each accession in each replicate consisted of 20 seedlings (3–4 days old) were planted in stereo-foam trays with plastic gauze layer. Seedlings were maintained in “Yoshida” nutrient solution and treated with 350 ppm Fe concentration and pH 4. The same media with 0 ppm Fe and neutral pH was used as a control. The parameters observed were root and hypocotyls length, root and hypocotyls dry weight. Results of this experiment showed that the resistance to excess Fe in low pH of 100 accessions evaluated were va-ried. Out of 100 accessions, eight accessions were categorised as resistant i.e. accession no. 449, 461, 476, 782, 785, 833, 836, and 839.</p>


1996 ◽  
Vol 121 (3) ◽  
pp. 399-403 ◽  
Author(s):  
Weixing Cao ◽  
Theodore W. Tibbitts

A system maintaining continuous water tension on a nutrient solution has been developed to control root zone moisture levels for plants in microgravity conditions. This study was conducted in a growth chamber to characterize potato (Solanum tuberosum L.) responses to constant water tension compared to plants grown with no tension using a free-water technique. In three separate experiments, plants were grown in trays filled with a 4-cm layer of 1-mm-diameter isolite (porous ceramic) particles. Ten porous stainless-steel tubes, 4 cm apart, were buried in the medium, and nutrient solution was drawn through the porous tubes under a constant water tension of -0.5 kPa maintained with a siphon system. For the free-water treatment, trays were slanted, and solution was supplied along the upper end of trays, passed under the medium, and then collected at the lower end and recirculated. The same nutrient solution was recirculated through both treatments at a flow rate of 150 ml·min-1 through each tray and maintained at a pH of 5.6. Uniform micropropagated `Norland' potato plantlets were transplanted into replicate trays and maintained at 18C, 70% relative humidity, and a continuous photosynthetic photon flux (PPF) of 450 μmol·m-2·s-1. Water tension reduced total plant dry weight, leaf area, leaf number, and stolon number by >75%, but specific leaf weight increased compared to free water. However, tubers enlarged more rapidly with water tension, and plants consistently partitioned a greater fraction of biomass into tubers (than into shoots). Tuber weight was greater with water tension than in the free-water culture in Expt. 1 harvested 37 days after transplanting, however it was less in Expt. 2 when plants were grown to a larger size for 52 days before harvest. Leaf CO2 assimilation rate, stomatal conductance, and transpiration were reduced with water tension, although the relative water content of leaves was not significantly affected. Also, with water tension, concentrations of N, P, Zn, and Cu in leaf tissues decreased, whereas tissue Fe increased compared to plants grown with free water. The results in this study demonstrate that constant water tension significantly affects potato plant growth and shifts biomass partitioning toward tubers.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 480f-481
Author(s):  
C. Elizabeth Succop ◽  
Steven E. Newman

Fresh-market basil has become a viable greenhouse commodity in Colorado. Marketing pressures and profit advantages also encourage the production of certified organic produce. The research objectives were to determine the length of time basil plants were productive in the greenhouse and to compare the production of fresh-market basil grown with three root zone systems and two fertilizer treatments. The three systems were hydroponic rockwool slab culture, hydroponic perlite raised bed culture, and hydroponic peat/perlite/compost bag culture. The two types of hydroponic fertilizer treatments were a salt-based formulated nutrient solution and an organic solution consisting of fermented poultry compost, hydrolized fish emulsion, and soluble kelp. The plants were harvested once per week for fresh weight determination. The results from the two runs show greater productivity for the plants in the perlite system as well as the bag mix system when fertilized with the organic fertilizer compared to salt-based fertilizer. However, productivity of the plants in the rockwool system was greater with the salt-based treatment compared to the organic treatment.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 522d-522 ◽  
Author(s):  
J.W. Buxton ◽  
D.L. Ingram ◽  
Wenwei Jia

Geraniums in 15-cm pots were irrigated automatically for 8 weeks with a Controlled Water Table (CWT) irrigation system. Plants were irrigated with a nutrient solution supplied by a capillary mat with one end of the mat suspended in a trough below the bottom of the pot. The nutrient solution remained at a constant level in the trough. Nutrient solution removed from the trough was immediately replaced from a larger reservoir. The vertical distance from the surface of the nutrient solution and the bottom of the pot determined the water/air ratio and water potential in the growing media. Treatments consisted of placing pots at 0, 2, 4, and 6 cm above the nutrient solution. Control plants were irrigated as needed with a trickle irrigation system. Geraniums grown at 0,2 and 4 CWT were ≈25% larger than the control plants and those grown at 6 CWT as measured by dry weight and leaf area. Roots of plants grown at 0 CWT were concentrated in the central area of the root ball; whereas roots of plants in other treatments were located more near the bottom of the pot. Advantages of the CWT system include: Plant controlled automatic irrigation; no run off; optimum water/air ratio.


Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 127
Author(s):  
Pedro García-Caparrós ◽  
Cristina Velasquez Espino ◽  
María Teresa Lao

The reuse of drainages for cultivating more salt tolerant crops can be a useful tool especially in arid regions, where there are severe problems for crops water management. Dracaena deremensis L. plants were cultured in pots with sphagnum peat-moss and were subjected to three fertigation treatments for 8 weeks: control treatment or standard nutrient solution (D0), raw leachates from Chrysalidocarpus lutescens H. Wendl plants (DL) and the same leachate blending with H2O2 (1.2 M) at 1% (v/v) (DL + H2O2). After harvesting, ornamental and biomass parameters, leaf and root proline and total soluble sugar concentration and nutrient balance were assessed in each fertigation treatment. Plant height, leaf and total dry weight had the highest values in plants fertigated with leachates with H2O2, whereas root length, leaf number, RGB values and pigment concentration declined significantly in plants fertigated with leachates from C. lutescens with or without H2O2. The fertigation with leachates, regardless of the presence or absence of H2O2 increased root and leaf proline concentration. Nevertheless, root and leaf total soluble sugar concentration did not show a clear trend under the treatments assessed. Regarding nutrient balance, the addition of H2O2 in the leachate resulted in an increase in plant nutrient uptake and efficiency compared to the control treatment. The fertigation with leachates with or without H2O2 increased nitrogen and potassium leached per plant compared to plants fertigated with the standard nutrient solution. The reuse of drainages is a viable option to produce ornamental plants reducing the problematic associated with the water consumption and the release of nutrients into the environment.


2019 ◽  
Vol 7 (2) ◽  
pp. 253
Author(s):  
I Made Andi Purnama Wijaya ◽  
Yohanes Setiyo ◽  
I Wayan Tika

Suhu tanah adalah salah satu sifat fisik tanah yang secara langsung mempengaruhi pertumbuhan tanaman pakcoy. Tujuan penelitian ini adalah (1) untuk menganalisis suhu di zona perakaran, (2) menganalisis hubungan antara dosis pemupukan mempergunakan kompos dengan suhu di zona perakaran dan (3) untuk menganalis suhu yang optimum untuk produktivitas dan kualitas pakcoy yang dihasilkan saat panen. Rancangan penelitian yang digunakan rancangan acak lengkap, dengan lima perlakuan dan tiga ulangan. Perlakuan tersebut adalah P0 : dosis kompos 0 kg/m2, P1 : dosis kompos 1 kg/m2, P2 : dosis kompos 2 kg/m2, P3 : dosis kompos 3 kg/m2, dan P4 : dosis kompos 4 kg/m2. Parameter yang diamati pada penelitian ini adalah suhu udara, suhulingkungan, kadar air tanah dan produktivitas. Padamalam hari suhu tanah di zona perakaran lebih tinggi 0,59 oC dari pada suhu lingkungan. Suhu tanah di zona perakaran terendah dan tertinggi adalah 18,02 oC dan 21,94 oC. Suhu tanah malam hari dan siang hari untuk dosis 0-5kg/m2 masih toleran pada tanaman pacoy. Berat kering tanaman pakcoy tertinggi pada perlakuan dosis kompos 4kg/m2 denganberat 92,21 gram/tanaman dan terendah pada perlakuan kontrol dengan berat 71,82 gram/tanaman.   The temperature of the soil is one of the physical properties of the soil, this soil physical properties direc2tly affect plant growth pakcoy.  The purpose of this research are (1) to analyze the temperature at root zone, temperature inside and out of the mini greenhouse, (2) analyze the relationship between temperature at root zone  with doses of compost fertilizer application and 3) to analyze the optimum dose of compost based on productivity and quality of the pakcoy is generated when the harvest. The design of the research used randomized complete design, with five treatments and three replicates. The treatment is P0: a dose of compost 0 kg/m, P1: a dose of compost 1 kg/m2, P2: a dose of compost 2 kg/m2, P3: the dose of compost 3 kg/m2, and P4: a dose of compost 4 kg/m2. The parameters observed in this research is the air temperature, the temperature of the environment, ground water levels and productivity.  At night the temperature of the soil rooting zone higher at 0.59 ºC than at the temperature of the environment. Soil temperature at root zone the lowest  and the highest  are 18.02 oC and 21.94 oC.  The temperature of the soil the night and during the day for dose 0-5 kg/m2 was still tolerant plants pakcoy. Dry weight of the plant the highest pakcoy on the treatment dose of compost 4 kg/m2  with a weight of 92.21 grams/lowest at the treatment plant and the control by the weight of 71.82 grams/plant.


Author(s):  
Hashmath Inayath Hussain ◽  
Naga Kasinadhuni ◽  
Tony Arioli

AbstractThis study investigated the effects of seaweed extract (SWE) made from the brown algae Durvillaea potatorum and Ascophyllum nodosum on plants and soil. The application of SWE to soil growing tomato plants showed dual effects. SWE comprehensively improved tomato plant growth (flower clusters, flower number, fruit number, root length, root and shoot dry weight, SPAD) and increased plant productivity (yield and quality). Similarly, SWE application effected soil biology at the soil root zone by increasing total bacterial count and available soil nitrogen and impacting bacterial community diversity with an increase in certain bacterial families linked to soil health. A broader understanding of the effects of SWE on the plant-soil ecosystem may offer breakthrough approaches for sustainable food production.


1987 ◽  
Vol 67 (2) ◽  
pp. 409-415 ◽  
Author(s):  
A. MENKIR ◽  
E. N. LARTER

Based on the results of an earlier paper, 12 inbred lines of corn (Zea mays L.) were evaluated for emergence and seedling growth at three controlled root-zone temperatures (10, 14, and 18 °C). Low root-zone temperatures, 10 and 14 °C, were detrimental to emergence, seedling growth, and root growth of all inbred lines. Differential responses of inbred lines were observed within each temperature regime. The differences in seedling emergence among lines became smaller with increasing root-zone temperature, while the reverse was true for seedling dry weight. Simple correlation coefficients showed a significantly (P = 0.05) negative association between emergence percentage and emergence index (rate). Neither of these two emergence traits was significantly correlated with seedling dry weights. Seedling dry weights were significantly (P = 0.01) and positively associated with root dry weights. Two inbred lines exhibited good tolerance to low root-zone temperatures, viz. CO255 and RB214. A significant and positive correlation existed between emergence percentage at a root-zone temperature of 10 °C and field emergence in test with the same genotypes reported earlier. Selection at a root-zone temperature of 10 °C for a high percentage of seedling emergence, therefore, could be effective in identifying genotypes capable of germinating in cool soils. Furthermore, the significantly (P = 0.01) positive relationship between seedling dry weights at all root-zone temperatures and those from the field test suggest that strains with vigorous seedling growth in the field could be identified using low root-zone temperature regimes.Key words: Zea mays, root-zone temperature, cold tolerance


2021 ◽  
Author(s):  
Maria Paula Mendes ◽  
Ana Paula Falcão ◽  
Magda Matias ◽  
Rui Gomes

&lt;p&gt;Vineyards are crops whose production has a major economic impact in the Portuguese economy (~750 million euros) being exported worldwide. As the climate models project a larger variability in precipitation regime, the water requirements of vineyards can change and drip irrigation can be responsible for salt accumulation in the root zone, especially when late autumn and winter precipitation is not enough to leach salts from the soil upper horizons, turning the soil unsuitable for grape production.&lt;/p&gt;&lt;p&gt;The aim of this work is to present a methodology to map surface soil moisture content (SMC) in a vineyard, (40 hectares) based on the application of two classification algorithms to satellite imagery (Sentinel 1 and Sentinel 2). Two vineyard plots were considered and three field campaigns (December 2017, January 2018 and May 2018) were conducted to measure soil moisture contents (SMC). A geostatistical method was used to estimate the SM class probabilities according to a threshold value, enlarging the training set (i.e., SMC data of the two plots) for the classification algorithms. Sentinel-1 and Sentinel-2 images and terrain attributes fed the classification algorithms. Both methods, Random Forest and Logistic Regression, classified the highest SMC areas, with probabilities above 14%, located close to a stream at the lower altitudes.&lt;/p&gt;&lt;p&gt;RF performed very well in classifying the topsoil zones with lower SMC during the autumn-winter period (F-measure=0.82).&lt;/p&gt;&lt;p&gt;This delineation allows the prevention of the occurrence of areas affected by salinization, indicating which areas will need irrigation management strategies to control the salinity, especially under climate change, and the expected increase in droughts.&lt;/p&gt;


2011 ◽  
Vol 35 (1) ◽  
pp. 249-254
Author(s):  
José Pereira Carvalho Neto ◽  
Enilson de Barros Silva ◽  
Reynaldo Campos Santana ◽  
Paulo Henrique Grazziotti

Adequate nutrient levels in plants vary according to the species or clone, age and management practice. Therefore, adjustments of the nutrient solution are often necessary according to the plant material for multiplication. This study aimed to evaluate the influence of NPK fertilization on production and leaf nutrient contents of eucalyptus cuttings in nutrient solution. The study was conducted from November 2008 to January 2009 in a greenhouse. The experimental design was completely randomized fractional factorial (4 x 4 x 4)½, with a total of 32 treatments with three replications. The treatments consisted of four doses of N (50, 100, 200 and 400 mg L-1) as urea, P (7.5, 15, 30 and 60 mg L-1) in the form of phosphoric acid and K (50, 100, 200 and 400 mg L-1) in the form of potassium chloride in the nutrient solution. Only the effect of N alone was significant for the number and dry weight of minicuttings per ministump, with a linear decreasing effect with increasing N levels. The highest number of cuttings was obtained at a dose of 50, 7.5 and 50 mg L-1 of N, P and K, respectively.


Sign in / Sign up

Export Citation Format

Share Document