scholarly journals Mutation Breeding in Ornamentals

HortScience ◽  
2021 ◽  
Vol 56 (10) ◽  
pp. 1154-1165
Author(s):  
Killian Melsen ◽  
Mark van de Wouw ◽  
Ryan Contreras

The promising possibilities of mutation breeding in ornamental plants have led to a great interest in effective mutagenic treatment protocols for various species. This review discusses mutagenic treatments of a large number of ornamental genera, the advantages and disadvantages of various techniques, and the possibilities of improving the associated protocols. A number of nontargeted mutagenesis methods are available, ranging from chemical treatment with alkylating agents to irradiation with X-rays, gamma rays, and neutron or heavy ion beams at various doses. These are all relatively inexpensive and have been proven to be effective mutagens in a large number of diverse species. Genetic engineering, however, remains mostly impractical for many ornamental breeding operations because of the high cost and lack of knowledge necessary to successfully transform and regenerate ornamental crops. Of the available nontargeted mutagens, irradiation with gamma rays is still the most popular. It provides high consistency compared with chemical mutagens, albeit at a seemingly lower mutagenic efficiency. Changes in the radiation dose rate may increase the efficiency, although chronic irradiation over a longer period causes fewer deleterious mutations than the commonly used acute irradiation protocols. Heavy ion beam irradiation may also provide highly consistent mutation induction at higher efficiencies because of the high particle energy associated with these treatments. There are also opportunities to improve chemical mutagenesis. Although the required knowledge of specific gene functions in many ornamentals is still lacking, combination mutagenesis with ethyl methanesulfontate with genetic screening in a process known as TILLING (Targeting Induced Local Lesions IN Genomes) may lead to a powerful mutation breeding tool in the future. Mutation breeding is still very useful, and many opportunities are available to improve the existing methods.

2015 ◽  
Vol 35 ◽  
pp. 25-35 ◽  
Author(s):  
A. Gunasekaran ◽  
P. Pavadai

Mutation breeding has been widely used for the improvement of plant characters in various crops. It is a powerful and effective tool in the hands of plant breeders. In any mutation breeding program, selection of an effective and efficient mutagen is very essential to produce high frequency of desirable mutation. Groundnut (Arachis hypogia) var. VRI-2. was treated with different concentration of physical and chemical mutagen namely gamma rays 10, 20, 30, 40, 50 and 60 KR and Ethyl methane sulphonate (EMS). For inducing mutation various concentration of EMS such as 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6 % for six hours were applied to 200 seed sample of each concentration and one respective control. The LD50 value was observed in 50% of gamma rays and 0.5 % of EMS. The morphological and yield characters were significantly reduced seed germination, seedling survival, days to first flower, plant height, number of leaves per plant, number of grains per plant, grain length and breath, 100 grains weight, grain yield per plant, fresh and dry weight per plant. The increasing doses/concentration of gamma rays and EMS decreased in phenotypic and yield characters in M1generation. The mutagenized populations showed significantly higher variability in the M2 generation. Mutant lines showing higher yield per plant than the respective parents and checks were isolated in M2 and subsequent generation were significantly more pod yield and yield components than the untreated plants.


2021 ◽  
pp. 411-423
Author(s):  
Tomoko Abe ◽  
Hiroyuki Ichida ◽  
Yoriko Hayashi ◽  
Ryouhei Morita ◽  
Yuki Shirakawa ◽  
...  

Abstract We have developed a unique technology for mutation induction of plants using energetic ion beams at the RI Beam Factory (RIBF) of Rikagaku Kenkyūjo (RIKEN) (Institute of Physical and Chemical Research). Ion beams effectively induce mutations at relatively low doses without severely inhibiting growth. The irradiation treatment can be given to various plant materials and mutation can be induced in a short time, between seconds and a few minutes. The linear energy transfer (LET) of ions depends on the nuclide and velocity. Since LET value affects the mutation frequency, it is an important parameter to determine the most effective irradiation condition in mutagenesis. We determined the most effective dose in each LET for mutation induction in imbibed rice seeds. Subsequently, we analysed the mutated DNA responsible for the phenotype in morphological mutants. Most of the mutations were small deletions of less than 100 bp. Irradiations of C-ions and Ne-ions are effective for plant breeding because of the very high mutation rate and sufficient energy to disrupt a single gene. On the other hand, all mutations induced by Ar-ion (290 keV/μm) irradiation were large deletions ranging from 176 bp to approximately 620 kb. The average number of mutations in the target exon regions was 7.3, 8.5 and 4.3 per M3 mutant plant in C-ions, Ne-ions and Ar-ions, respectively. The number of mutations induced by heavy-ion irradiation was relatively small. We could identify six responsible genes for eight mutants induced by C-ion and Ne-ion irradiations and two responsible genes for four mutants induced by Ar-ion irradiation. Three of these were genes not previously described.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4156-4156
Author(s):  
Ikuo Kashiwakura ◽  
Kenji Takahashi ◽  
Satoru Monzen ◽  
Kiyomi Eguchi-Kasai ◽  
Tsutomu Toki ◽  
...  

Abstract Heavy ion particles provide unique properties in radiotherapy. However, they have also been shown to pose high risks for both work at nuclear facilities and astronauts participating in space missions. In a previous study, we demonstrated that in radio-sensitive megakaryocyte progenitor cells, namely colony-forming unit megakaryocytes (CFU-Meg), a degree of X-ray-induced damage was prevented by post-treatment with several cytokines. In this study, we analyzed the effects of heavy ion particles on megakaryocytopoiesis and thrombopoiesis. The CD34+ CFU-Meg were isolated from human placental and umbilical cord blood using a magnetic isolation kit and then were exposed to a carbon ion beam (LET=50 KeV/mm). They were cultured in a serum free medium supplemented with a thrombopoietin (TPO) alone or a combination of TPO plus other cytokines including stem cell factor, interleukin-3 (IL-3) and Flt3-ligand. The number of CFU-Meg was calculated by a plasma clot technique. The differentiation into megakaryocytes (CD41+) and the release of platelets (CD42a+) in a liquid culture were both analyzed by flow cytometry. The increase of gamma-H2AX, a marker of DNA double-strand breaks (DSBs) was also detected by flow cytometry. The sensitivity of CFU-Meg to a carbon ion beam was found to be extremely high and could not be lowered by any type of cytokines unlike X-rays. However, treatment with TPO plus IL-3 potentially induced megakaryocytopoiesis and thrombopoiesis at 14 days after the exposure to a carbon ion beam at 2 Gy. The cytokine treatment enhanced the induction of gamma-H2AX in X-ray-irradiated CD34+ CFU-Meg but not in a carbon ion beam-irradiated one. These results show that not only the downregulation of death signals, but also the repair of DSBs was less strongly promoted by cytokines in CFU-Meg exposed to a carbon ion beam than X-rays. Different treatments therefore are required to protect against megakaryocytopoiesis and thrombopoiesis damage by heavy ion particles.


2016 ◽  
Vol 8 (5) ◽  
pp. 34 ◽  
Author(s):  
Xicun Dong ◽  
Xia Yan ◽  
Wenjian Li

<p>The Heavy Ion Research Facility in Lanzhou (HIRFL) is one of the ion-beam acceleration facilities intensively used at IMP, founded as national laboratory and opened for user in world from 1992. Since then, a lot of experiments irradiated by heavy ion beam have been carried out in the HIRFL, including plant mutation breeding. In this review, the biological effects induced by heavy ions and their corresponding mechanisms were reported from the point of view of cytological, morphological and molecular levels. To date, a large number of mutants were isolated using heavy ion irradiation IMP, such as early maturity, flower color and shape, high yield and disease resistant. In conclusion, heavy ion beam irradiation is an efficient mutagen and has significant phenotypic variations in plant. Our research will be further focused on transformation of scientific and technological achievements and mutagenic mechanism of heavy ion beam on high plant at the molecular level in the recent future.</p>


2017 ◽  
Vol 7 ◽  
pp. 28 ◽  
Author(s):  
Irfan Ahmad Bhat ◽  
Umar Jan Pandit ◽  
Imtiyaz Ahmad Sheikh ◽  
Zia Ul Hassan

The  studies  of  induced  mutation  in  <em>Linum  usitatissimum</em>  L.  were  performed  by  exposing  the  fully  mature  and  healthy  dry  seeds  to  gamma  rays    at  10  and  15  Kr,  X-rays  at  10  and  15  Kr,  hydroxylamine  (HA)  at  0.1%  and  0.2%,  5-amino  acridine  (AA)  at  0.1%  and  0.2%  doses.  The  observations  were  made  for  seed  germination  %,  survival  %  and  growth  characters  such  as  shoot  length,  root  length  and  dry  weight.  Seeds  treated  with  low  dose  of  mutagens  showed  negligible  effect  while  that  with  the  high  dose  exhibit  significant  effects  on  studied  parameters  as  compared  to  control.  Data  obtained  in  this  study  were  statistically  significant  at  5%  level.  The  results  conclude  that  treatments  of  gamma  rays  and  X-rays  were  less  effective  as  compared  to  those  of  HA  and  AA  treatments.


2021 ◽  
pp. 24-39
Author(s):  
Hitoshi Nakagawa

Abstract Following the construction of the Gamma Field at the Institute of Radiation Breeding in 1960, mutation breeding was accelerated in Japan. The facility is used, with a radiation dose up to 2 Gy/day (ca. 300,000 times that of natural background), to induce mutations at a higher frequency than occurs in nature. There have been 318 direct- use mutant cultivars representing 79 species generated through irradiation of gamma-rays, X-rays, ion beams and chemicals and somaclonal variation. Approximately 79% of these direct-use cultivars were induced by radiation. There have been 375 indirect-use mutant cultivars, including 332 rice, of which 162 cultivars (48.8%) were derived from the semi-dwarf mutant cv. 'Reimei'. The economic impact of these mutant cultivars, primarily of rice and soybean, is very large. Some useful mutations are discussed for rice, such as low digestible protein content, low amylose content, giant embryo and non-shattering. Useful mutations in soybean such as radiosensitivity, fatty acid composition and super-nodulation have been identified. Japanese pear and apple resistant to Alternaria disease have also been identified. The achievements of biological research such as characterization and determination of deletion size generated by gamma-rays, the effect of deletion size and the location, and a mechanism of dominant mutation induction are identified. Similarly, genetic studies on mutations generated through the use of gamma-ray induced mutations, such as phytochrome response, aluminium tolerance, stay-green (Mendel's gene) and epicuticular wax have also been conducted. Mutation breeding is a very useful technology for isolating genes and for elucidating gene functions and metabolic pathways in various crops.


2014 ◽  
Vol 48 (2) ◽  
pp. 142-154 ◽  
Author(s):  
Zhitong Bing ◽  
Guanghui Yang ◽  
Yanan Zhang ◽  
Fengling Wang ◽  
Caiyong Ye ◽  
...  

Abstract Background. Carbon ion therapy may be better against cancer than the effects of a photon beam. To investigate a biological advantage of carbon ion beam over X-rays, the radioresistant cell line HeLa cells were used. Radiationinduced changes in the biological processes were investigated post-irradiation at 1 h by a clinically relevant radiation dose (2 Gy X-ray and 2 Gy carbon beam). The differential expression proteins were collected for analysing biological effects. Materials and methods. The radioresistant cell line Hela cells were used. In our study, the stable isotope labelling with amino acids (SILAC) method coupled with 2D-LC-LTQ Orbitrap mass spectrometry was applied to identity and quantify the differentially expressed proteins after irradiation. The Western blotting experiment was used to validate the data. Results. A total of 123 and 155 significantly changed proteins were evaluated with treatment of 2 Gy carbon and X-rays after radiation 1 h, respectively. These deregulated proteins were found to be mainly involved in several kinds of metabolism processes through Gene Ontology (GO) enrichment analysis. The two groups perform different response to different types of irradiation. Conclusions. The radioresistance of the cancer cells treated with 2 Gy X-rays irradiation may be largely due to glycolysis enhancement, while the greater killing effect of 2 Gy carbon may be due to unchanged glycolysis and decreased amino acid metabolism.


2020 ◽  
Vol 80 (04) ◽  
Author(s):  
Deepak Sharma ◽  
Richa Sao ◽  
Parmeshwar K. Sahu ◽  
Gautam Vishwakarma ◽  
J. P. Nair ◽  
...  

Knowledge about the type of mutagen used and its optimized dose are of paramount importance to design and implement any plant mutation breeding programme. Present study was first time carried out to evaluate the comparative effectiveness, radio-sensitivity behavior and relative biological effectiveness of four physical mutagens viz., gamma rays, X-rays, electron beam and proton beam on two short grain aromatic rice landraces viz., Samundchini and Vishnubhog. The seeds of these two varieties were treated with 15 different doses of all four mutagens, ranging from 50Gy to 750Gy with an interval of 50Gy. Germination percentage and seedling growth parameters were recorded at seven and 15 days after sowing, respectively in two replications. It was observed that germination percentage, shoot and root length of the seedling gradually declined with the increase in doses of all the physical mutagens. On the basis of these observations, LD50 and GR50 doses were calculated. The present study reports the optimum range of doses for gamma ray (280 to 350 Gy); electron beam (290 to 330Gy); X-ray (200 to 250 Gy) and proton beam (150 to 200Gy). GR50 doses were observed higher than LD50 doses for all the mutagens in both landraces. However, Samundchini showed higher LD50 and GR50 doses than Vishnubhog indicating later to be more radio-sensitive. Furthermore, both the genotypes were highly radio-sensitive for proton beam and least for gamma rays. Similarly, high relative biological effectiveness was observed for proton beam followed by X-ray, electron beam and gamma rays indicating their decreasing trend of penetration capacity and lethality. Results of present study will be useful for plant breeders to use the above mutagens in an appropriate dose for mutation breeding in rice.


Sign in / Sign up

Export Citation Format

Share Document