scholarly journals Use of Alternative Containers for Long- and Short-term Greenhouse Crop Production

2015 ◽  
Vol 25 (1) ◽  
pp. 26-34 ◽  
Author(s):  
Renee Conneway ◽  
Sven Verlinden ◽  
Andrew K. Koeser ◽  
Michael Evans ◽  
Rebecca Schnelle ◽  
...  

While research on the use of alternative containers for greenhouse production is growing, most studies have focused on a limited number of types of alternative containers and primarily on short-term greenhouse crops. With the recent release of several new bioplastic alternatives, comparisons to established alternative containers and production of longer rotation ornamental crops should be investigated. Our work, therefore, investigates the performance of ten commercially available alternative containers and their effects on both a short-term ‘Sunpatiens Compacta’ impatiens (Impatiens ×hybrida) and a long-term greenhouse crop ‘Elegans Ice’ lavender (Lavendula angustifolia) at four different locations. Results indicated that plant growth in terms of dry weight differed by container at most locations. Combined analysis of all locations showed that only straw and a bioplastic sleeve outperformed plastic pots in terms of shoot dry weight and then only after 12 weeks of production. Leachate pH, but not electrical conductivity (EC), varied by container in both the short- and long-term crop with alternative containers made from composted cow manure and peat showing consistently higher and lower pH readings, respectively. Postharvest container strength varied significantly by container, with the plastic control maintaining the highest puncture resistance after both 6 and 12 weeks, in some instances matched by the puncture strength of coconut fiber pots. Some alternative containers, in particular, wood, manure, and peat showed algal growth after 6 and 12 weeks of greenhouse production. We conclude that while some alternative containers were linked to increased growth, most showed growth equal to the plastic control, and could therefore make appropriate alternatives to plastic pots. However, changes in pH, low puncture strengths after production, higher denesting times, and algal growth on manure, wood, and peat may make these pots less desirable alternatives than other pots under investigation. However, other factors not studied here, such as compostability, biodegradability in the landscape, water use, consumer preference, aesthetics, compatibility with mechanized operations, and cost may also need to be taken into account when deciding on an appropriate container for greenhouse production.

HortScience ◽  
1991 ◽  
Vol 26 (9) ◽  
pp. 1171-1173 ◽  
Author(s):  
Joyce G. Latimer ◽  
Tomio Johjima ◽  
Yuhji Fukuyama

Shoots of field-grown plants of European radish (Raphanus sativus L. `Comet'), Japanese radish (daikon) (R. sativus L. `Mino-wase'), and Asian turnip (Brassica rapa L. `Hinona') were brushed twice daily, 40 cycles (back-and-forth strokes equal one cycle), for 8 (short-term) or 13, 21, or 14 days (long-term), respectively. European turnip (B. rapa L. `Hikari-kabu') plants were grown in a raised bed in an uncovered plastic house and were brushed for 9 or 21 days. Short-term brushing reduced root dry weight and the root: shoot dry weight ratio (R: S) of European radish, whereas the treatment increased these measurements for Asian turnip and European turnip. Short-term brushing had no effect on growth of Japanese radish plants, but increased root dry weight gain by both turnip cultivars, thereby increasing their R: S ratios. Lung-term brushing reduced root dry weight gain and the R: S ratio of European radish and root dry weight of Asian turnip but had no effect on these measurements for the other crops. Long-term brushing reduced cracking of European radish roots, thereby resulting in a higher proportion of oblong (medium quality) roots. Consequently, the percentage of marketable-quality roots of European radish was increased by brushing. Lung-term brushing increased the percentage of medium-sized roots of Asian turnip at the expense of large-sized roots. Brushing had no effect on root quality of European turnip.


2016 ◽  
Vol 5 (3) ◽  
pp. 32 ◽  
Author(s):  
Miles Dyck ◽  
Sukhdev S. Malhi ◽  
Marvin Nyborg ◽  
Dyck Puurveen

<p>Pre-seeding tillage of long-term no-till (NT) land may alter crop production by changing the availability of some nutrients in soil. Effects of short-term (4 years) tillage (hereafter called reverse tillage [RT]) of land previously under long-term (29 or 30 years) NT, with straw management (straw removed [SRem] and straw retained [SRet]) and N fertilizer rate (0, 50 and 100 kg N ha<sup>-1</sup> in SRet, and 0 kg N ha<sup>-1</sup> in SRem plots), were determined on plant yield (seed + straw, or harvested as forage/silage at soft dough stage), and N and P uptake in growing seasons from 2010 to 2013 at Breton (Gray Luvisol [Typic Cryoboralf] loam) and from 2009 to 2012 at Ellerslie (Black Chernozem [Albic Argicryoll] loam), Alberta, Canada. Plant yield, N uptake and P uptake tended to be greater with RT compared to NT in most cases at both sites, although significant in a few cases only at Ellerslie. On average over both sites, RT produced greater plant yield by 560 kg ha<sup>-1</sup> yr<sup>-1</sup>, N uptake by 5.8 kg N ha<sup>-1</sup> yr<sup>-1</sup>, and P uptake by 1.8 kg P ha<sup>-1</sup> yr<sup>-1</sup> than NT. There was no consistent beneficial effect of straw retention on plant yield, N uptake and P uptake in different years. Plant yield, N uptake and P uptake increased with N fertilization at both sites, with up to the maximum rate of applied N at 100 kg N ha<sup>-1</sup> in 3 of 4 years at Breton and in 2 of 4 years at Ellerslie. In conclusion, our findings suggested some beneficial impact of occasional tillage of long-term NT soil on crop yield and nutrient uptake.</p>


2020 ◽  
Vol 66 (No. 12) ◽  
pp. 527-541
Author(s):  
Zaid Ashiq Khan ◽  
Mansoor Ahmed Koondhar ◽  
Noshaba Aziz ◽  
Uzair Ali ◽  
Liu Tianjun

Pakistan is an agriculture-based country, so the agricultural sector is known as the backbone of the national economy. Considering the national economy and the agricultural industry, it is necessary to focus on earnings through agricultural products export to improve the livelihood of local farmers. Therefore, the current study aimed to analyse the short-term and long-term factors affecting agricultural products export. The annual time series of 1976–2016 were collected from World Bank indicators, the Food and Agriculture Organization, and the Statistical Bureau of Pakistan. An autoregressive distributed lag, along with a vector error correction model, was employed. A cointegration test showed long-term associations between the selected variables. While the autoregressive distributed lag model confirmed the short-term correlation between area sown and crop production towards agricultural products export, there is no long-term relationship between the selected variables. In addition, the bidirectional correlation between employment in agriculture and agricultural products export was confirmed by the vector error correction model. Therefore, it is essential to increase agricultural production with the available natural resources to increase foreign earnings.


1990 ◽  
Vol 115 (3) ◽  
pp. 364-368 ◽  
Author(s):  
Yves Desjardins ◽  
André Gosselin ◽  
Michel Lamarre

Asparagus (Asparagus officinalis L.) transplants and in vitro-cultured clones were grown and acclimatized under two photosynthetic photon flux (PPF) conditions (ambient and ambient + 80 μmol·s-1·m-2) and three atmospheric CO2 concentrations (330, 900, and 1500 ppm). Short- and long-term effects were measured in the greenhouse and after two seasons of growth in the field, respectively. In the greenhouse, CO2 enrichment (CE) and supplemental lighting (SL) increased root and fern dry weight by 196% and 336%, respectively, for transplants and by 335% and 229%, respectively, for clones. For these characteristics, a significant interaction was observed between SL and CE with tissue-cultured plantlets. In the absence of SL, CE did not significantly increase root or shoot dry weight. No interaction was observed between CE and SL for transplants, although these factors significantly improved growth. It was possible to reduce the nursery period by as much as 3 weeks with CE and SL and still obtain a plant size comparable to that of the control at the end of the experiment. Long-term effects of SL were observed after two seasons of growth in the field. Supplemental lighting improved survival of transplants and was particularly beneficial to in vitro plants. Clones grown under SL were of similar size as transplants after 2 years in the field.


2021 ◽  
Vol 12 ◽  
Author(s):  
Muhammad Naveed ◽  
Bisma Tanvir ◽  
Wang Xiukang ◽  
Martin Brtnicky ◽  
Allah Ditta ◽  
...  

Among heavy metals, chromium (Cr) contamination is increasing gradually due to the use of untreated industrial effluents for irrigation purposes, thereby posing a severe threat to crop production. This study aimed to evaluate the potential of compost, biochar (BC), and co-composted BC on the growth, physiological, biochemical attributes, and health risks associated with the consumption of Brassica grown on Cr-contaminated soil. Results revealed that Cr stress (Cr-25) significantly reduced the growth and physiological attributes and increased antioxidant enzyme activities in Brassica, but the applied amendments considerably retrieved the negative effects of Cr toxicity through improving the growth and physiology of plants. The maximum increase in plant height (75.3%), root length (151.0%), shoot dry weight (139.4%), root dry weight (158.5%), and photosynthetic rate (151.0%) was noted with the application of co-composted BC under Cr stress (Cr-25) in comparison to the control. The application of co-composted BC significantly reduced antioxidant enzyme activities, such as APX (42.5%), GP (45.1%), CAT (45.4%), GST (47.8%), GR (47.1%), and RG (48.2%), as compared to the control under Cr stress. The same treatment reduced the accumulation of Cr in grain, shoot, and roots of Brassica by 4.12, 2.27, and 2.17 times and enhanced the accumulation in soil by 1.52 times as compared to the control. Moreover, the application of co-composted BC significantly enhanced phytostabilization efficiency and reduced associated health risks with the consumption of Brassica. It is concluded that the application of co-composted BC in Cr-contaminated soil can significantly enhance the growth, physiological, and biochemical attributes of Brassica by reducing its uptake in plants and enhanced phytostabilization efficiency. The tested product may also help in restoring the soils contaminated with Cr.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2269
Author(s):  
Widad Al Azzawi ◽  
Muhammad Bilal Gill ◽  
Foad Fatehi ◽  
Meixue Zhou ◽  
Tina Acuña ◽  
...  

Potassium deficiency is one of the major issues affecting crop production around the globe. Giving the high cost of potassium fertilizers and environmental concerns related to inappropriate fertilization practices, developing more potassium use efficient (KUE) varieties is critical for sustainable food production in agricultural systems. In this study, we analysed the impact of potassium availability on agronomical attributes of thirty barley genotypes grown at four different levels of potassium (0.002 mM, 0.02 mM, 2 mM, 20 mM) under glasshouse conditions. The results showed that the availability of potassium in the soil had a major effect on yield components i.e., spike number, grain number and grain weight. Furthermore, grain weight showed a strong correlation with grain number and spike number at all levels of potassium supply. Although an increase in potassium supply led to an increase in plant height in all genotypes, the correlation with grain weight was very weak at all levels. Potassium supplementation caused an increase in shoot dry weight, which also showed a weak correlation with grain weight at the 0.002 mM potassium supply level. The genotypes Gebeina, Skiff, YF374, Flagship and YF374 were highly efficient in performing at suboptimal K supply levels and, thus, can be recommended to be grown in K-impoverished soils. We also suggest that grain and spike numbers could be used as proxies for KUE studies, to construct DH lines and identify QTL to improve low potassium tolerance and KUE in barley.


HortScience ◽  
2015 ◽  
Vol 50 (4) ◽  
pp. 603-608 ◽  
Author(s):  
James E. Altland ◽  
James C. Locke ◽  
Wendy L. Zellner ◽  
Jennifer K. Boldt

Dolomitic lime (DL) is the primary liming agent used for increasing pH in peatmoss-based substrates. Steel slag (SS) is a byproduct of the steel manufacturing industry that has been used to elevate field soil pH. The objective of this research was to determine the pH response of a peatmoss-based greenhouse substrate to varying rates of DL or SS. Two experiments were conducted with an 85 peatmoss : 15 perlite substrate. In the first experiment, the substrate was amended with 0, 2.4, 4.8, or 7.1 kg·m−3 of either DL or SS. Half of the containers remained fallow and the other half were potted with a single sunflower (Helianthus annuus L. ‘Pacino Gold’). In the second experiment, fallow containers were only used with the substrate amended with 0, 2.4, 4.8, 9.5, or 14.2 kg·m−3 DL or SS. Sunflower were measured for relative foliar chlorophyll content, shoot mass, root ratings, and foliar nutrient concentrations. Substrate electrical conductivity (EC) and pH were measured weekly using the pour-through procedure. All sunflower plants grew vigorously, although nonamended controls had less shoot dry weight than those amended with DL or SS. There were minor differences in foliar concentration of N, Ca, Mg, and Mn; however, these differences did not adversely affect plant growth. Summarizing across both experiments, EC was affected by treatment and time, although all substrates had EC readings within the range recommended for floriculture crop production (1.0–4.6 mS⋅cm−1). Substrate pH differed slightly in Expt. 1 between fallow and planted containers. Substrate pH increased exponentially with increasing rates of either DL or SS. Maximum pH in fallow DL and SS amended substrates was 6.57 and 6.93, respectively, in Expt. 1 and 6.85 and 7.67, respectively, in Expt. 2. The SS used in this experiment resulted in a greater pH response than DL with higher application rates. SS is a viable material for raising pH of soilless substrates.


2016 ◽  
Vol 4 (2) ◽  
pp. 207-212
Author(s):  
M.K. Hasan ◽  
K.M. Nasiruddin ◽  
M. Al-Amin ◽  
A.K.M.S. Hossain

Salinity is one of the most limiting factors for successful crop production in in arid and semi-arid regions of the world. Thirty eight soybean genotypes were screened at 8mMNaCl under in vitro condition. Salinity reduced Shoot dry weight, Root dry weight and Plant height. Salt susceptibility index was fully and positive correlated with percent reduction of total dry weight. Principal component analysis showed that the first two components were extracted that comprises of about 98.6% of the total variation in the genotypes. Based on the K-means clustering, 8, 6, 12 and 12 genotypes were categorized under cluster II, IV, III and I and considered as tolerant, moderately tolerant, moderately susceptible and susceptible which represents the 21, 16, 31.5 and 31.5%, respectively. Genotypes Shohag, AGS 313, PK 416, AGS 66, MACS 57, AGS 195, GC 308, AGS 129 were found relatively tolerant to salinity.Int J Appl Sci Biotechnol, Vol 4(2): 207-212


1982 ◽  
Vol 39 (1) ◽  
pp. 221-224 ◽  
Author(s):  
Eric L. Mills ◽  
Karin Pittman ◽  
Brent Munroe

It would be convenient if preserved animals could be used to determine fresh-weight biomass. However, marine annelids, nematodes, bivalves, amphipods, and isopods all lost weight when preserved and stored in 70% isopropanol. In 10% formalin only bivalves lost weight significantly; the other groups showed evidence of small increases or decreases. Many animals preserved in alcohol decreased sharply in weight within a few minutes, probably due to dehydration. In formalin most increased at first, then slowly decreased. The response to preservatives is complex, involving short-term changes of water content and long-term changes of tissue composition. Precision, though not accuracy, of preserved wet weights can only be achieved after specimens have been in preservatives for a month or more, especially in the case of isopropanol. For these reasons, wet and dry weight biomass figures should be determined from fresh, unpreserved animals.Key words: fixation, preservation (organisms), biomass determination, benthos


1990 ◽  
Vol 47 (12) ◽  
pp. 2328-2338 ◽  
Author(s):  
Walter K. Dodds ◽  
John C. Priscu

Short-term (h) and Song-term (d) changes in phytoplankton community physiology and bsomass in response to nutrient enrichment were used concomitantly as bioassays of phytoplankton nutrient deficiency in oligotrophic Flathead Lake, Montana, six times over the course of a year. Long-term bioassays consisted of nutrient amendments to epilimnetic water in 20 L containers which were subsequently monitored for algal growth. Short-term bioassays included measurement of NH4+ stimulation of dark carbon fixation, measurement of PO43− and NH4+ uptake over time to assess depletion of internal pools and stimulation effects of PO43− on NH4+ uptake and NH4+ on PO43− uptake. During thermal stratification, simultaneous additions of NH4+ and PO43− in long-term bioassays caused significant increases in chlorophyll a concentration, photosynthetic 14CO2 uptake, and particulate N concentration within 4.5 d; single additions of NH4+ or PO43− had little or no effect. During winter mixing there was little evidence for N or P deficiency in either short- or long-term bioassays. In general, short-term bioassays did not consistently agree with each other or with long-term bioassays. Our results suggest that it may be necessary to elicit growth of phytoplankton with nutrient addition to make definitive statements regarding nutrient deficiency.


Sign in / Sign up

Export Citation Format

Share Document