scholarly journals Determination of shelf-life using accelerated shelf-life testing (ASLT) method and characterization of the flavour components of freeze-dried durian (Durio zibethinus) products

Food Research ◽  
2021 ◽  
Vol 5 (S2) ◽  
pp. 98-106
Author(s):  
S. Darniadi ◽  
D.D. Handoko ◽  
S. Sunarmani ◽  
S. Widowati

Durian is a unique tropical fruit that has a strong smell and distinctive taste. It is a seasonal fruit and has a few days shelf-life. Freeze drying is known for preserving foods while maintaining its original shape and provide excellent rehydrated products. This study aimed to determine the shelf-life of freeze-dried (FD) durian products using the accelerated shelf-life testing (ASLT) method and to assess the flavour changes in fresh and freeze-dried durian products. The parameters used to determine shelf-life were moisture content and L* a* b* colour values of FD durian products for 28 days of storage at 30, 40, and 50oC. Flavour analysis using Solid Phase Microextraction (SPME) and Gas Chromatography-Mass Spectrometry (GCMS) was carried out on fresh durian pulp, FD durian for 30 hrs, and FD durian for 36 hrs. The estimation of shelf-life of FD durian products at storage temperatures of 25 and 30oC, respectively, were based on the following parameters: (1) moisture content: 41 and 37 days, (2) L*(brightness): 467 and 311 days, (3) a* (redness): 144 and 171 days, and (4) b*(yellowness): 43 and 46 days. A total of twenty-four volatile compounds contributed to the flavour of fresh durian fruit and five of them had concentrations of more than 10 ppm. The losses percentage of these five volatile compounds were in a range of 78-95% (FD durian for 30 hrs) and a range of 0- 100% (FD durian for 36 hrs). Freeze-drying technique on durian was able to extend shelflife and preserve flavour compounds.

2020 ◽  
Vol 9 (4) ◽  
pp. 30
Author(s):  
Fadwa Al-Taher ◽  
Boris Nemzer

The objective of this study was to determine a method for the identification of aroma volatile compounds in freeze-dried (FD) strawberries and raspberries for quality purposes. The aroma profile was examined using headspace solid-phase micro-extraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS). FD strawberries and raspberries were extracted at four different times (10,15, 20 and 30 min) and three different temperatures (40 °C, 60 °C and 80 °C) using a SPME fiber coated with 50/30 µm divinylbenzene/carboxen on polydimethylsiloxane (DVB/CAR-PDMS) to determine optimum recoveries for aroma volatile compounds. The DVB/CAR-PDMS SPME fiber showed the best extraction of aroma volatile compounds from strawberry and raspberry at 60°C for 15 min. Twenty-nine volatile compounds were identified from the strawberry samples and 20 from the raspberry samples, including terpenes, aldehydes, esters, acids and alcohols. Select aroma compounds in FD strawberries and raspberries were quantitated using SPME and GC-MS. It is important to determine the desirable aroma active compounds in freeze-dried strawberries and raspberries for quality uses since they are becoming popular commercially.


Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6260
Author(s):  
Nurul Hanisah Juhari ◽  
Helle Jakobe Martens ◽  
Mikael Agerlin Petersen

Fresh roselle are high in moisture and deteriorate easily, which makes drying important for extending shelf-life and increasing availability. This study investigated the influence of different drying methods (oven-drying, freeze-drying, vacuum-drying, and sun-drying) on the quality of roselle calyx expressed as physicochemical properties (moisture content, water activity, soluble solids, color), volatile compounds, and microstructure. Oven-drying and freeze-drying reduced moisture content most while vacuum-drying and sun-drying were not as efficient. All drying methods except sun-drying resulted in water activities low enough to ensure safety and quality. Vacuum-drying had no impact on color of the dry calyx and only small impact on color of water extract of calyx. Drying reduced terpenes, aldehydes, and esters but increased furans. This is expected to reduce fruity, floral, spicy, and green odors and increase caramel-like aroma. Sun-drying produced more ketones, alcohols, and esters. Scanning electron microscopy revealed that freeze-drying preserved the cell structure better, and freeze-dried samples resembled fresh samples most compared to other drying techniques. The study concludes that freeze-drying should be considered as a suitable drying method, especially with respect to preservation of structure.


1985 ◽  
Vol 57 (2) ◽  
pp. 133-138 ◽  
Author(s):  
Rainer Huopalahti ◽  
Eila Kesälahti ◽  
Reino Linko

Volatile compounds of fresh, hot air dried and freeze dried dill (Anethum graveolens L.) herb were studied by gas chromatography-mass spectrometry. Of the 25 volatile components identified, 16 the most abundant compounds were analysed quantitatively. The major primary aroma compounds were α-phellandrene, 3,6-dimethyl-2,3,3a,4,5,7a-hexahydrobenzofuran,β-phellandrene, limonene, α-pinene, p-cymene and myristicin. Severe loss of these components occured during the drying of dill. E.g. the retention of the benzofuranoid, the most important aroma component of the dill herb, was from trace to 1.3 % in hot air dried samples and 3.5—20 % in freeze dried samples. During the drying secondary aroma compounds are formed consisting over 50 % of the total volatiles. Among these phytadienes, especially neophytadiene, were the major components. The best result was obtained by freeze drying, but the product contained only one quarter of the total aroma compounds of the fresh dill herb.


HortScience ◽  
2007 ◽  
Vol 42 (2) ◽  
pp. 309-314 ◽  
Author(s):  
Natta Laohakunjit ◽  
Orapin Kerdchoechuen ◽  
Frank B. Matta ◽  
Juan L. Silva ◽  
William E. Holmes

The volatiles of longon (Lansium domesticum Corr. var Dongon), mangosteen (Garcinia mangostana L. var Native), durian (Durio zibethinus L. var Monthong), rambutan (Nephelium lappaceum L. var Rong-rien), and sapodilla (Manilkara zapota van Royer var Kai) were identified by headspace-solid phase microextraction with the gas chromatography-mass spectrometry technique. The headspace volatiles of fresh, unheated, salted out with NaCl, and NaCl + heated samples were determined. Salting out gave the highest number of volatile components with the longon headspace. High temperature did not have much affect on the amount of volatiles in the headspace. Major volatiles of the total 43 volatiles in longon were 1,3,5 trioxane, (E)-2-hexenal, 3-carene, α-cubebene, isoledene, δ-selinene, and α-calacorene. Major volatiles of mangosteen were 2, 2-dimethyl-4-octanal, E-2-hexenal, benzaldehyde, (Z)-3-hexen-1-ol, hexyl–n-valerate, 1,4-pentadiene, and 2-methyl-1, 3-buten-2-ol. Volatile compounds in durian consisted of a large number of sulfur-containing compounds, which included diethyltrisulfide, diethyldisulfide, dithiolane, dimetyl sulfide, and 3-methyl-thiozolidine. Nonsulfur compounds 2-methyl butanoate, butanedioic acid, and propyl-2-ethylbutanoate were also abundant. Isocitonellol, 3-hydroxy-2-butanone, pentanal, and 4-tridecyl valerate were most abundant in ‘Rong-rien’ rambutan. A total of 23 components were characterized in sapodilla with ethyl acetate, acetaldehyde, benzyl alcohol, and 2-butenyl benzene being the major volatiles.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3612
Author(s):  
Marinos Xagoraris ◽  
Alexandra Skouria ◽  
Panagiota-Kyriaki Revelou ◽  
Eleftherios Alissandrakis ◽  
Petros A. Tarantilis ◽  
...  

This study aimed at an experimental design of response surface methodology (RSM) in the optimization of the dominant volatile fraction of Greek thyme honey using solid-phase microextraction (SPME) and analyzed by gas chromatography-mass spectrometry (GC-MS). For this purpose, a multiple response optimization was employed using desirability functions, which demand a search for optimal conditions for a set of responses simultaneously. A test set of eighty thyme honey samples were analyzed under the optimum conditions for validation of the proposed model. The optimized combination of isolation conditions was the temperature (60 °C), equilibration time (15 min), extraction time (30 min), magnetic stirrer speed (700 rpm), sample volume (6 mL), water: honey ratio (1:3 v/w) with total desirability over 0.50. It was found that the magnetic stirrer speed, which has not been evaluated before, had a positive effect, especially in combination with other factors. The above-developed methodology proved to be effective in the optimization of isolation of specific volatile compounds from a difficult matrix, like honey. This study could be a good basis for the development of novel RSM for other monofloral honey samples.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1180
Author(s):  
Xiaoyu Yin ◽  
Qian Chen ◽  
Qian Liu ◽  
Yan Wang ◽  
Baohua Kong

Smoking is mainly used to impart desirable flavour, colour and texture to the products. Various food smoking methods can be divided into traditional and industrial methods. The influences of three different smoking methods, including traditional smouldering smoke (TSS), industrial smouldering smoke (ISS) and industrial liquid smoke (ILS), on quality characteristics, sensory attributes and flavour profiles of Harbin red sausages were studied. The smoking methods had significant effects on the moisture content (55.74–61.72 g/100 g), L*-value (53.85–57.61), a*-value (11.97–13.15), b*-value (12.19–12.92), hardness (24.25–29.17 N) and chewiness (13.42–17.32). A total of 86 volatile compounds were identified by headspace solid phase microextraction combined with comprehensive two-dimensional gas chromatography mass spectrometry (GC × GC-qMS). Among them, phenolic compounds were the most abundant compounds in the all sausages. Compared with sausages smoked with smouldering smoke, the ILS sausages showed the highest content of volatile compounds, especially phenols, alcohols, aldehydes and ketones. Principal component analysis showed that the sausages smoked with different methods had a good separation based on the quality characteristics and GC × GC-qMS data. These results will facilitate optimising the smoking methods in the industrial production of smoked meat products.


Author(s):  
Mariana Muelbert ◽  
Laura Galante ◽  
Tanith Alexander ◽  
Jane E. Harding ◽  
Chris Pook ◽  
...  

Abstract Background Volatile compounds in breastmilk (BM) likely influence flavor learning and, through the cephalic phase response, metabolism, and digestion. Little is known about the volatile compounds present in preterm BM. We investigated whether maternal or infant characteristics are associated with the profile of volatile compounds in preterm BM. Methods Using solid-phase microextraction coupled with gas chromatography/mass spectrometry, we analyzed volatile compounds in 400 BM samples collected from 170 mothers of preterm infants. Results Forty volatile compounds were detected, mostly fatty acids and their esters (FA and FAe), volatile organic compounds (VOCs), aldehydes, terpenoids, alcohols, and ketones. The relative concentration of most FA and FAe increased with advancing lactation and were lower in BM of most socially deprived mothers and those with gestational diabetes (p < 0.05), but medium-chain FAs were higher in colostrum compared to transitional BM (p < 0.001). Infant sex, gestational age, and size at birth were not associated with the profile of volatile compounds in preterm BM. Conclusions Sensory-active volatile FA and FAe are the major contributors to the smell of preterm BM. The associations between lactation stage, maternal characteristics, and volatile compounds, and whether differences in volatile compounds may affect feeding behavior or metabolism, requires further research. Impact Sensory-active volatile FAs are major contributors to the smell of preterm BM and are influenced by the lactation stage and maternal characteristics. Longitudinal analysis of volatile compounds in preterm BM found that FAs increased with advancing lactation. Colostrum had a higher concentration of medium-chain FAs compared to transitional BM and the concentration of these is associated with socioeconomic status, gestational diabetes, and ethnicity.


2004 ◽  
Vol 380 (2) ◽  
pp. 541-548 ◽  
Author(s):  
Hai-Shu LIN ◽  
Andrew M. JENNER ◽  
Choon Nam ONG ◽  
Shan Hong HUANG ◽  
Matthew WHITEMAN ◽  
...  

8-Hydroxy-2´-deoxyguanosine (8OHdG) is a widely used biomarker for the measurement of endogenous oxidative DNA damage. A sensitive method for the quantification of 8OHdG in urine by single solid-phase extraction and GC-MS (gas chromatography with MS detection) using selective ion monitoring is described in the present study. After solid-phase extraction, samples are freeze-dried, derivatized by trimethylsilylation and analysed by GC-MS. The urinary 8OHdG was quantified using heavy isotope dilution with [18O]8OHdG. The recovery of 8OHdG after the solid-phase extraction ranged from 70 to 80% for a wide range of urinary 8OHdG levels. Using 1 ml of urine, the limit of quantification was >2.5 nM (2.5 pmol/ml) and the calibration curve was linear in the range 2.5–200 nM. This method was applied to measure 8OHdG in urine samples from 12 healthy subjects. The intra- and inter-day variations were <9%. Urinary 8OHdG levels in spot urine samples from four healthy subjects were also measured for 1 week and, again, the variation was small. The presence of H2O2 in urine did not cause artifactual formation of 8OHdG. Since this assay is simple, rapid, sensitive and reproducible, it seems suitable to be used as a routine methodology for the measurement of urinary excretion of 8OHdG in large population studies.


2021 ◽  
Author(s):  
Yanbo Liu ◽  
Mengxiao Sun ◽  
Pei Hou ◽  
Wenya Wang ◽  
Xiangkun Shen ◽  
...  

Abstract In this study, the pit mud used in manufacturing Taorong-type Baijiu was collected from the upper, middle, lower and bottom layers of pits in Henan Yangshao Liquor Co., LTD. Besides, high-throughput sequencing (HTS) technology was adopted to analyze the microbial community structure of the pit mud. In addition, the volatile compounds in the pit mud were subjected to preliminarily qualitative analysis through headspace-solid phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS). The results of HTS demonstrated that there were 5, 3, 5 and 5 dominant bacterial phyla (including 11, 11, 9 and 8 dominant bacterial genera) and 3, 3, 3 and 3 dominant fungal phyla (including 4, 7, 7 and 5 dominant fungal genera) in the pit mud from F-S (upper), G-Z (middle), H-X (lower) and I-D (bottom), respectively. The qualitative analysis results of volatile compounds demonstrated that a total of 78 kinds of volatile compounds were detected in the pit mud, including 46, 45, 39 and 49 kinds in the pit mud from F-S, G-Z, H-X and I-D, respectively. Ester and acid were the two main components in the pit mud. Meanwhile, the correlation between microorganisms and main volatile compounds in the pit mud was analyzed. Moreover, Lentimicrobium, Syner-01 and Blvii28_wastewater-sludge group were found for the first time in the pit mud used for manufacturing Taorong-type Baijiu. The findings of this study could provide a theoretical foundation for improving the quality of pit mud and the flavor of Taorong-type Baijiu.


Author(s):  
N. S. Chervyakova ◽  
T. V. Valova ◽  
A. V. Osin

By the example of Martin Christ Epsilon 2-6D device carried out was assessment of the possibility to use freeze-dryers of the chamber type for conservation of pathogenic microorganisms collection strains. Elaborated was algorithm of lyophilisation of the III-IV pathogenicity groups bacteria, which incorporated conditions of freeze-drying and biological safety provision of this process. Indices of viability and survivability were defined for freeze-dried cells of pathogenic bacteria strains. Using thermostability test calculated were predicted timelines of storage of collection strains preparations freeze-dried in the flasks in Martin Christ Epsilon 2-6D. It was determined that in the collections of pathogenic microorganisms freeze-dryers of the chamber type could be used most prospectively for the III-IV pathogenicity groups bacteria conservation requiring mass reproduction and not intended for long storage. At the same time their application for freeze-drying of the strains of the I-II pathogenicity groups bacteria intended for a long storage, requires further adaptation of these devices as regards biological safety provision and prolongation of the shelf life.


Sign in / Sign up

Export Citation Format

Share Document