scholarly journals ANALITIC INVESTIGATION OF THE REGULARITIES OF CHANGING DUST CONCENTRATION DURING THE ABRASIVE DECREASE OF STONE STRUCTURES

2018 ◽  
Vol 2 ◽  
pp. 28-39
Author(s):  
Alla Bezpalova ◽  
Vladimir Lebedev ◽  
Yuri Morozov

In the process of repair or restoration of building structures, it is often necessary to strengthen building structures from limestone-shell rock, concrete, reinforced concrete, hard materials-granite, basalt, etc. by cutting or making cuts of the required size with detachable circles of synthetic diamond and cubic boron nitride (CA and CBN) The cutting process is accompanied by considerable dust formation, which can be both harmful and dangerous factor in the work. The aim of the work is studying the process of dust sedimentation and the regularity of the change in dust concentration during the abrasive cutting of concrete and stone materials. Mathematical models have been developed – dust emission from under the wheel, speed of sedimentation of dust particles depending on their material, size and shape, and also depending on temperature, pressure and humidity, the concentration of dust in the working space and the concentration change during the cutting cycle are calculated. It is shown that the velocity of the sedimentation of particles depends significantly on the shape. The higher the sphericity, the higher the sedimentation rate. The ambient temperature has little effect on the sedimentation rate, in the temperature range (-20 → + 40 °C) at which the operation takes place. The sedimentation rate of dust particles generated by cutting the most common building stone materials also differs slightly. Almost the same sedimentation rate has dust particles obtained by cutting basalt and concrete. A bit higher is the sedimentation rate of particles from granite. The sedimentation rate of particles of generated dust is about 600-700 cm/h or 10-11 cm/min for particles measuring 6 μm. This means that at a production height of about 2 m (200 cm) during the operating cycle (about 3 min), the dust will remain at an altitude of about 1.5 m, i.е. practically remains in the working area. This gives grounds to assert about a high concentration of dust during the cutting cycle (about 4.8 108/m3).

2017 ◽  
Vol 17 (3) ◽  
pp. 2401-2421 ◽  
Author(s):  
Siyu Chen ◽  
Jianping Huang ◽  
Litai Kang ◽  
Hao Wang ◽  
Xiaojun Ma ◽  
...  

Abstract. The Weather Research and Forecasting Model with chemistry (WRF-Chem model) was used to investigate a typical dust storm event that occurred from 18 to 23 March 2010 and swept across almost all of China, Japan, and Korea. The spatial and temporal variations in dust aerosols and the meteorological conditions over East Asia were well reproduced by the WRF-Chem model. The simulation results were used to further investigate the details of processes related to dust emission, long-range transport, and radiative effects of dust aerosols over the Taklimakan Desert (TD) and Gobi Desert (GD). The results indicated that weather conditions, topography, and surface types in dust source regions may influence dust emission, uplift height, and transport at the regional scale. The GD was located in the warm zone in advance of the cold front in this case. Rapidly warming surface temperatures and cold air advection at high levels caused strong instability in the atmosphere, which strengthened the downward momentum transported from the middle and low troposphere and caused strong surface winds. Moreover, the GD is located in a relatively flat, high-altitude region influenced by the confluence of the northern and southern westerly jets. Therefore, the GD dust particles were easily lofted to 4 km and were the primary contributor to the dust concentration over East Asia. In the dust budget analysis, the dust emission flux over the TD was 27.2 ± 4.1 µg m−2 s−1, which was similar to that over the GD (29 ± 3.6 µg m−2 s−1). However, the transport contribution of the TD dust (up to 0.8 ton d−1) to the dust sink was much smaller than that of the GD dust (up to 3.7 ton d−1) because of the complex terrain and the prevailing wind in the TD. Notably, a small amount of the TD dust (PM2.5 dust concentration of approximately 8.7 µg m−3) was lofted to above 5 km and transported over greater distances under the influence of the westerly jets. Moreover, the direct radiative forcing induced by dust was estimated to be −3 and −7 W m−2 at the top of the atmosphere, −8 and −10 W m−2 at the surface, and +5 and +3 W m−2 in the atmosphere over the TD and GD, respectively. This study provides confidence for further understanding the climate effects of the GD dust.


2016 ◽  
Author(s):  
Siyu Chen ◽  
Jianping Huang ◽  
Litai Kang ◽  
Hao Wang ◽  
Xiaojun Ma ◽  
...  

Abstract. The weather research and forecasting model with chemistry (WRF-Chem) was used to investigate a typical dust storm event that occurred from 18th to 23rd March 2010 and swept across almost all of China, Japan, and Korea. WRF-Chem captured the spatial and temporal variations in dust aerosols and the meteorological conditions over East Asia well, and the results were used to further investigate details of processes related to dust emission, long-range transport, and radiative effects of dust aerosols over the Taklimakan desert (TD) and Gobi desert (GD). Results showed that the differences of weather conditions and topography and surface types in dust source regions may lead to the differences of dust emission, uplift height and transport. The typical dust event over East Asia was classified into two main stages. In the first stage (18th–20th March), the GD was located in the warm zone in advance of a cold front. The enhanced convection increased momentum transfer in the middle and lower troposphere because of the instability in the atmosphere. Moreover, the GD is located in relatively flat, high altitude regions influenced by the confluence of the northern and southern westerly jets. Therefore, the GD dust transport was the primary contributor to the dust concentration over East Asia. The strength of the dust emission decreased greatly during the second stage (21st–23rd March). The TD dust emission contributed to the dust concentration over East Asia. Cold air was lifted over the Pamir Plateau and intruded into the Tarim basin causing a strong uplifting motion. The average TD dust emission flux was 27.2 ± 4.1 μg m−2 s−1. However, the transport contribution of the TD dust (1.1 ton day−1) to the dust sink was smaller than that of the GD dust (1.4 ton day−1) because of the complex terrain and the prevailing wind in the TD. It is noted that the TD is not the main source region in China but a small amount of the TD dust was lofted to more than 5 km and transported over greater distances under the influence of the westerly jets. Moreover, the radiative forcing induced by dust particles is estimated as −3 W m−2 and −7 W m−2 at the top of the atmosphere, −8 W m−2 and −10 W m−2 at the surface, and +5 W m−2 and +3 W m−2 in the atmosphere over the TD and GD, respectively. The study provided confidence for further understanding the climate effect of the TD and GD dust.


Atmosphere ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 275 ◽  
Author(s):  
Christian A. Álvarez ◽  
José N. Carbajal ◽  
Luis F. Pineda-Martínez ◽  
José Tuxpan ◽  
David E. Flores

Numerical simulations revealed a profound interaction between the severe dust storm of 2007 caused by Santa Ana winds and the Gulf of California. The weather research and forecasting model coupled with a chemistry module (WRF-CHEM) and the hybrid single-particle Lagrangian integrated trajectory model (HYSPLIT) allowed for the estimation of the meteorological and dynamic aspects of the event and the dust deposition on the surface waters of the Gulf of California caused by the erosion and entrainment of dust particles from the surrounding desert regions. The dust emission rates from three chosen areas (Altar desert, Sonora coast, and a region between these two zones) and their contribution to dust deposition over the Gulf of California were analyzed. The Altar Desert had the highest dust emission rates and the highest contribution to dust deposition over the Gulf of California, i.e., it has the most critical influence with 96,879 tons of emission and 43,539 tons of dust deposition in the gulf. An increase of chlorophyll-a concentrations is observed coinciding with areas of high dust deposition in the northern and western coast of the gulf. This kind of event could have a significant positive influence over the mineralization and productivity processes in the Gulf of California, despite the soil loss in the eroded regions.


Author(s):  
Bartosz Pałubicki ◽  
Luďka Hlásková ◽  
Tomasz Rogoziński

Air pollution by wood dust in furniture production sites is an important hygiene issue. The dust is created by all types of wood and wood-based material machining, and its concentration in the working zone surrounding the machining stand depends on the effectiveness of the dust exhaust system. In present research, three setups of the dust extraction system for a conventional table sawing machine are considered while machining particleboards. The results showed a high impact of the exhaust system connection setup on the dust concentration in the air surrounding the sawing machine work stand. The use of both main and auxiliary sawdust extraction connectors together ensured the highest clearness of the air, with only 0.5 mg/m3 of dust concentration. Closing the upper hood leads to a concentration five times higher, while disconnecting it results in a ten times higher dust content. The finest dust particles (<1 µm), however, are the most numerous in the case of closing the hood.


2010 ◽  
Vol 10 (18) ◽  
pp. 8821-8838 ◽  
Author(s):  
C. Zhao ◽  
X. Liu ◽  
L. R. Leung ◽  
B. Johnson ◽  
S. A. McFarlane ◽  
...  

Abstract. A fully coupled meteorology-chemistry-aerosol model (WRF-Chem) is applied to simulate mineral dust and its shortwave (SW) radiative forcing over North Africa. Two dust emission schemes (GOCART and DUSTRAN) and two aerosol models (MADE/SORGAM and MOSAIC) are adopted in simulations to investigate the modeling sensitivities to dust emissions and aerosol size treatments. The modeled size distribution and spatial variability of mineral dust and its radiative properties are evaluated using measurements (ground-based, aircraft, and satellites) during the AMMA SOP0 campaign from 6 January to 3 February of 2006 (the SOP0 period) over North Africa. Two dust emission schemes generally simulate similar spatial distributions and temporal evolutions of dust emissions. Simulations using the GOCART scheme with different initial (emitted) dust size distributions require ~40% difference in total emitted dust mass to produce similar SW radiative forcing of dust over the Sahel region. The modal approach of MADE/SORGAM retains 25% more fine dust particles (radius<1.25 μm) but 8% less coarse dust particles (radius>1.25 μm) than the sectional approach of MOSAIC in simulations using the same size-resolved dust emissions. Consequently, MADE/SORGAM simulates 11% higher AOD, up to 13% lower SW dust heating rate, and 15% larger (more negative) SW dust radiative forcing at the surface than MOSAIC over the Sahel region. In the daytime of the SOP0 period, the model simulations show that the mineral dust heats the lower atmosphere with an average rate of 0.8 ± 0.5 K day−1 over the Niamey vicinity and 0.5 ± 0.2 K day−1 over North Africa and reduces the downwelling SW radiation at the surface by up to 58 W m−2 with an average of 22 W m−2 over North Africa. This highlights the importance of including dust radiative impact in understanding the regional climate of North Africa. When compared to the available measurements, the WRF-Chem simulations can generally capture the measured features of mineral dust and its radiative properties over North Africa, suggesting that the model is suitable for more extensive simulations of dust impact on regional climate over North Africa.


2012 ◽  
Vol 12 (21) ◽  
pp. 10209-10237 ◽  
Author(s):  
K. Wang ◽  
Y. Zhang ◽  
A. Nenes ◽  
C. Fountoukis

Abstract. The US Environmental Protection Agency's (EPA) Community Multiscale Air Quality (CMAQ) modeling system version 4.7 is further developed to enhance its capability in simulating the photochemical cycles in the presence of dust particles. The new model treatments implemented in CMAQ v4.7 in this work include two online dust emission schemes (i.e., the Zender and Westphal schemes), nine dust-related heterogeneous reactions, an updated aerosol inorganic thermodynamic module ISORROPIA II with an explicit treatment of crustal species, and the interface between ISORROPIA II and the new dust treatments. The resulting improved CMAQ (referred to as CMAQ-Dust), offline-coupled with the Weather Research and Forecast model (WRF), is applied to the April 2001 dust storm episode over the trans-Pacific domain to examine the impact of new model treatments and understand associated uncertainties. WRF/CMAQ-Dust produces reasonable spatial distribution of dust emissions and captures the dust outbreak events, with the total dust emissions of ~111 and 223 Tg when using the Zender scheme with an erodible fraction of 0.5 and 1.0, respectively. The model system can reproduce well observed meteorological and chemical concentrations, with significant improvements for suspended particulate matter (PM), PM with aerodynamic diameter of 10 μm, and aerosol optical depth than the default CMAQ v4.7. The sensitivity studies show that the inclusion of crustal species reduces the concentration of PM with aerodynamic diameter of 2.5 μm (PM2.5) over polluted areas. The heterogeneous chemistry occurring on dust particles acts as a sink for some species (e.g., as a lower limit estimate, reducing O3 by up to 3.8 ppb (~9%) and SO2 by up to 0.3 ppb (~27%)) and as a source for some others (e.g., increasing fine-mode SO42− by up to 1.1 μg m−3 (~12%) and PM2.5 by up to 1.4 μg m−3 (~3%)) over the domain. The long-range transport of Asian pollutants can enhance the surface concentrations of gases by up to 3% and aerosol species by up to 20% in the Western US.


2017 ◽  
Author(s):  
Bing Pu ◽  
Paul Ginoux

Abstract. High concentration of dust particles can cause respiratory problems and increase non-accidental mortality. Studies found fine dust (with aerodynamic diameter less than 2.5 microns) is an important component of the total PM2.5 mass in the western and central U.S. in spring and summer and has positive trends. This work examines factors influencing long-term variations of fine dust concentration in the U.S. using station data from the Interagency Monitoring Protected Visual Environments (IMPROVE) network during 1990–2015. The variations of the fine dust concentration can be largely explained by the variations of precipitation, surface bareness, and 10 m wind speed. Moreover, including convective parameters such as convective inhibition (CIN) and convective available potential energy (CAPE) better explains the variations and trends over the Great Plains from spring to fall. While the positive trend of fine dust concentration in the Southwest in spring is associated with precipitation deficit, the increasing of fine dust over the central Great Plains in summer is largely associated with an enhancing of CIN and a weakening of CAPE, which are related to increased atmospheric stability due to surface drying and lower troposphere warming. The positive trend of the Great Plains low-level jet also contributes to the increasing of fine dust concentration in the central Great Plains in summer via its connections with surface winds and CIN. Summer dusty days in the central Great Plains are usually associated with a westward extension of the North Atlantic subtropical high that intensifies the Great Plains low-level jet and also results in a stable atmosphere with subsidence and reduced precipitation.


Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3389
Author(s):  
Nara Han ◽  
Sol Park ◽  
Byung Kwon Kaang ◽  
Wooree Jang ◽  
Hye Young Koo ◽  
...  

There is significant interest in developing novel absorbents for hazardous material cleanup. Iron oxide-coated melamine formaldehyde sponge (MFS/IO) absorbents with various IO layer thicknesses were synthesized. Various other absorbents were also synthesized and compared to evaluate the absorption capability of the MFS/IO absorbents for strong acid (15%, v/v) and base (50%, m/m) solutions. Specifically, absorbent and solution drop tests, dust tests, and droplet fragment tests were performed. Among the various absorbents, MFS/IO absorbents possessing a needlelike surface morphology showed several unique characteristics not observed in other absorbents. The MFS/IO absorbents naturally absorbed a strong base solution (absorption time: 0.71–0.5 s, absorption capacity: 10,000–34,000%) without an additional external force and immediately absorbed a strong acid solution (0.31–0.43 s, 9830–10,810%) without absorption delay/overflow during absorbent and solution drop tests, respectively. The MFS/IO absorbents were also demonstrated to be ideal absorbents that generated fewer dust particles (semiclass 1 (ISO 3) level of 280 piece/L) than the level of a clean room (class 100). Furthermore, the MFS/IO absorbents were able to prevent the formation of droplet fragments and solution overflow during the solution drop test due to their unique surface morphology and extremely high absorption speed/capacity, respectively.


2010 ◽  
Vol 41 (1) ◽  
pp. 25 ◽  
Author(s):  
Andrea Rosario Proto ◽  
Giuseppe Zimbalatti ◽  
Martino Negri

In Italy, the woodworking industry presents many issues in terms of occupational health and safety. This study on exposure to wood dust could contribute to the realization of a prevention model in order to limit exposure to carcinogenic agents to the worker. The sampling methodology illustrated the analysis of dust emissions from the woodworking machinery in operation throughout the various processing cycles. The quantitative and qualitative assessment of exposure was performed using two different methodologies. The levels of wood dust were determined according to EN indications and sampling was conducted using IOM and Cyclon personal samplers. The qualitative research of wood dust was performed using an advanced laser air particle counter. This allowed the number of particles present to be counted in real time. The results obtained allowed for an accurate assessment of the quality of the dust emitted inside the workplace during the various processing phases. The study highlighted the distribution of air particles within the different size classes, the exact number of both thin and ultra-thin dusts, and confirmed the high concentration of thin dust particles which can be very harmful to humans.


Sign in / Sign up

Export Citation Format

Share Document