scholarly journals Relating microstructure, sensory and instrumental texture of processed oat

2008 ◽  
Vol 13 (1-2) ◽  
pp. 124 ◽  
Author(s):  
M. SALMENKALLIO-MARTTILA ◽  
R-L. HEINIÖ ◽  
O. MYLLYMÄKI

This study is a part of a larger project aiming to produce new, healthy, and tasty food ingredients from oat. Germination and different heating processes can be used to improve the texture and flavour of cereals. In this study effects of germination and wet and dry heating on the microstructure, instrumental structure and sensory properties of two oat varieties were assessed. The microstructure of native, germinated, autoclaved and extruded grains of the hulled cv. Veli and hull-less cv. Lisbeth was examined by light microscopy, the texture was measured by determining the milling energy and hardness of the grains and sensory characteristics were evaluated with descriptive sensory profile analysis. In cv. Veli the cells of the starchy endosperm were smaller than in cv. Lisbeth and ß-glucan was concentrated in the subaleurone layer. In cv. Lisbeth ß-glucan was evenly distributed in the starchy endosperm. The grains of cv. Lisbeth were more extensively modified in the germination process than the grains of cv. Veli, otherwise the effects of processing on the grains of the two cultivars were similar. Germination caused cell wall degradation, autoclaving and extrusion cooking caused starch gelatinization. Autoclaving resulted in the hardest perceived texture in oat. Gelatinization of starch appeared to contribute more to the hardness of oat groats than the cell wall structure. Of the instrumental methods used in this study the milling energy measurement appeared to be the most useful method for the analysis of the effects of processing on grain structure.;

2019 ◽  
Author(s):  
Sylvia L. Rivera ◽  
Akbar Espaillat ◽  
Arjun K. Aditham ◽  
Peyton Shieh ◽  
Chris Muriel-Mundo ◽  
...  

Transpeptidation reinforces the structure of cell wall peptidoglycan, an extracellular heteropolymer that protects bacteria from osmotic lysis. The clinical success of transpeptidase-inhibiting β-lactam antibiotics illustrates the essentiality of these cross-linkages for cell wall integrity, but the presence of multiple, seemingly redundant transpeptidases in many bacterial species makes it challenging to determine cross-link function precisely. Here we present a technique to covalently link peptide strands by chemical rather than enzymatic reaction. We employ bio-compatible click chemistry to induce triazole formation between azido- and alkynyl-D-alanine residues that are metabolically installed in the cell walls of Gram-positive and Gram-negative bacteria. Synthetic triazole cross-links can be visualized by substituting azido-D-alanine with azidocoumarin-D-alanine, an amino acid derivative that undergoes fluorescent enhancement upon reaction with terminal alkynes. Cell wall stapling protects the model bacterium Escherichia coli from β-lactam treatment. Chemical control of cell wall structure in live bacteria can provide functional insights that are orthogonal to those obtained by genetics.<br>


2021 ◽  
Vol 06 ◽  
Author(s):  
Ayekpam Chandralekha Devi ◽  
G. K. Hamsavi ◽  
Simran Sahota ◽  
Rochak Mittal ◽  
Hrishikesh A. Tavanandi ◽  
...  

Abstract: Algae (both micro and macro) have gained huge attention in the recent past for their high commercial value products. They are the source of various biomolecules of commercial applications ranging from nutraceuticals to fuels. Phycobiliproteins are one such high value low volume compounds which are mainly obtained from micro and macro algae. In order to tap the bioresource, a significant amount of work has been carried out for large scale production of algal biomass. However, work on downstream processing aspects of phycobiliproteins (PBPs) from algae is scarce, especially in case of macroalgae. There are several difficulties in cell wall disruption of both micro and macro algae because of their cell wall structure and compositions. At the same time, there are several challenges in the purification of phycobiliproteins. The current review article focuses on the recent developments in downstream processing of phycobiliproteins (mainly phycocyanins and phycoerythrins) from micro and macroalgae. The current status, the recent advancements and potential technologies (that are under development) are summarised in this review article besides providing future directions for the present research area.


2021 ◽  
Vol 9 (6) ◽  
pp. 1323
Author(s):  
Etai Boichis ◽  
Nadejda Sigal ◽  
Ilya Borovok ◽  
Anat A. Herskovits

Infection of mammalian cells by Listeria monocytogenes (Lm) was shown to be facilitated by its phage elements. In a search for additional phage remnants that play a role in Lm’s lifecycle, we identified a conserved locus containing two XRE regulators and a pair of genes encoding a secreted metzincin protease and a lipoprotein structurally similar to a TIMP-family metzincin inhibitor. We found that the XRE regulators act as a classic CI/Cro regulatory switch that regulates the expression of the metzincin and TIMP-like genes under intracellular growth conditions. We established that when these genes are expressed, their products alter Lm morphology and increase its sensitivity to phage mediated lysis, thereby enhancing virion release. Expression of these proteins also sensitized the bacteria to cell wall targeting compounds, implying that they modulate the cell wall structure. Our data indicate that these effects are mediated by the cleavage of the TIMP-like protein by the metzincin, and its subsequent release to the extracellular milieu. While the importance of this locus to Lm pathogenicity remains unclear, the observation that this phage-associated protein pair act upon the bacterial cell wall may hold promise in the field of antibiotic potentiation to combat antibiotic resistant bacterial pathogens.


2008 ◽  
Vol 47 (3) ◽  
pp. 273-280 ◽  
Author(s):  
H. P. S. Abdul Khalil ◽  
M. Siti Alwani ◽  
R. Ridzuan ◽  
H. Kamarudin ◽  
A. Khairul

Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 758
Author(s):  
Verónica García Arteaga ◽  
Sonja Kraus ◽  
Michael Schott ◽  
Isabel Muranyi ◽  
Ute Schweiggert-Weisz ◽  
...  

Pea protein concentrates and isolates are important raw materials for the production of plant-based food products. To select suitable peas (Pisum sativum L.) for protein extraction for further use as food ingredients, twelve different cultivars were subjected to isoelectric precipitation and spray drying. Both the dehulled pea flours and protein isolates were characterized regarding their chemical composition and the isolates were analyzed for their functional properties, sensory profiles, and molecular weight distributions. Orchestra, Florida, Dolores, and RLPY cultivars showed the highest protein yields. The electrophoretic profiles were similar, indicating the presence of all main pea allergens in all isolates. The colors of the isolates were significantly different regarding lightness (L*) and red-green (a*) components. The largest particle size was shown by the isolate from Florida cultivar, whereas the lowest was from the RLPY isolate. At pH 7, protein solubility ranged from 40% to 62% and the emulsifying capacity ranged from 600 to 835 mL g−1. The principal component analysis revealed similarities among certain pea cultivars regarding their physicochemical and functional properties. The sensory profile of the individual isolates was rather similar, with an exception of the pea-like and bitter attributes, which were significantly different among the isolates.


Author(s):  
S. Pramod ◽  
M. Anju ◽  
H. Rajesh ◽  
A. Thulaseedharan ◽  
Karumanchi S. Rao

AbstractPlant growth regulators play a key role in cell wall structure and chemistry of woody plants. Understanding of these regulatory signals is important in advanced research on wood quality improvement in trees. The present study is aimed to investigate the influence of exogenous application of 24-epibrassinolide (EBR) and brassinosteroid inhibitor, brassinazole (BRZ) on wood formation and spatial distribution of cell wall polymers in the xylem tissue of Leucaena leucocephala using light and immuno electron microscopy methods. Brassinazole caused a decrease in cambial activity, xylem differentiation, length and width of fibres, vessel element width and radial extent of xylem suggesting brassinosteroid inhibition has a concomitant impact on cell elongation, expansion and secondary wall deposition. Histochemical studies of 24-epibrassinolide treated plants showed an increase in syringyl lignin content in the xylem cell walls. Fluorescence microscopy and transmission electron microscopy studies revealed the inhomogenous pattern of lignin distribution in the cell corners and middle lamellae region of BRZ treated plants. Immunolocalization studies using LM10 and LM 11 antibodies have shown a drastic change in the micro-distribution pattern of less substituted and highly substituted xylans in the xylem fibres of plants treated with EBR and BRZ. In conclusion, present study demonstrates an important role of brassinosteroid in plant development through regulating xylogenesis and cell wall chemistry in higher plants.


Sign in / Sign up

Export Citation Format

Share Document