Pyrolysis of Tropical Agricultural Crop Waste (Pineapple Residue and Banana Pseudo-Stem): Kinetics, Mechanism and Valorization of Bio-Char

2021 ◽  
Author(s):  
Shuo Yang ◽  
Xin Wang ◽  
Boxiong Shen ◽  
Jiancheng Yang ◽  
Lianfei Xu ◽  
...  
Keyword(s):  
Biotecnia ◽  
2019 ◽  
Vol 22 (1) ◽  
pp. 126-134
Author(s):  
José Luis Espinoza-Acosta

Agricultural residues valorization has been an important issue over the last decades. Agricultural crop waste is an abundant, non-food, renewable, and low-cost feedstock to obtain attractive products for the food industry. The interest in replacing food ingredients such as artificial sweeteners with these obtained by biotechnological processes has grown in recent years, due to consumer’s high demand for low-calories foods and beverages without sacrificing taste. Several types of low caloric sweeteners are being obtained from the biotransformation of agricultural residues, with xylitol above all, for environmental, economic, and nutritional reasons. In recent years, the conversion of hydrolyzed agricultural residues into xylitol using enzymes, yeasts, and fungi has shown significant advances, although there are still many problems to be solved. This review presents the main advances in the use of microorganisms, substrates, and process conditions for the biotransformation of agricultural residues to xylitol. Besides, the main advantages and disadvantages of xylitol obtained by biotechnological routes compared to traditional chemical routes are discussed.RESUMENLa valorización de residuos agrícolas ha sido un tema importante en las últimas décadas. Los desechos de cultivos agrícolas son una materia prima abundante, no alimenticia, renovable y de bajo costo útil para obtener productos atractivos para la industria alimenticia. El interés por reemplazar ingredientes alimenticios de origen sintético por aquellos obtenidos por procesos biotecnológicos ha crecido en los últimos años debido a la gran demanda de los consumidores por los alimentos y bebidas con bajo contenido calórico sin sacrificar el sabor. Varios tipos de edulcorantes de bajo contenido calórico se han obteniendo a partir de la biotransformación de residuos agrícolas, destacando de todos ellos el xilitol por razones ecológicas, económicas y nutricionales. En los últimos años, la conversión de hidrolizados de residuos agrícolas en xilitol utilizando enzimas, levaduras y hongos ha mostrado avances importantes, aunque aún existen muchos problemas por resolver. En esta revisión se presentan los principales avances en el uso de microorganismos, sustratos y condiciones de proceso para la biotransformación de residuos agrícolas en xilitol. Además, se discuten las principales ventajas y desventajas del xilitol obtenido por rutas biotecnológicas comparado con las rutas químicas tradicionales.


2021 ◽  
Vol 8 ◽  
Author(s):  
Libin Yang ◽  
Daekwon Park ◽  
Zhao Qin

Mycelium-based bio-composite materials have been invented and widely applied to different areas, including construction, manufacturing, agriculture, and biomedical. As the vegetative part of a fungus, mycelium has the unique capability to utilize agricultural crop waste (e.g., sugarcane bagasse, rice husks, cotton stalks, straw, and stover) as substrates for the growth of its network, which integrates the wastes from pieces to continuous composites without energy input or generating extra waste. Their low-cost and environmentally friendly features attract interest in their research and commercialization. For example, mycelium-based foam and sandwich composites have been actively developed for construction structures. It can be used as synthetic planar materials (e.g., plastic films and sheets), larger low-density objects (e.g., synthetic foams and plastics), and semi-structural materials (e.g., paneling, flooring, furniture, decking). It is shown that the material function of these composites can be further tuned by controlling the species of fungus, the growing conditions, and the post-growth processing method to meet a specific mechanical requirement in applications (e.g., structural support, acoustic and thermal insulation). Moreover, mycelium can be used to produce chitin and chitosan, which have been applied to clinical trials for wound healing, showing the potential for biomedical applications. Given the strong potential and multiple advantages of such a material, we are interested in studying it in-depth and reviewing the current progress of its related study in this review paper.


2014 ◽  
Vol 13 (1) ◽  
Author(s):  
Jan Piekarczyk

AbstractWith increasing intensity of agricultural crop production increases the need to obtain information about environmental conditions in which this production takes place. Remote sensing methods, including satellite images, airborne photographs and ground-based spectral measurements can greatly simplify the monitoring of crop development and decision-making to optimize inputs on agricultural production and reduce its harmful effects on the environment. One of the earliest uses of remote sensing in agriculture is crop identification and their acreage estimation. Satellite data acquired for this purpose are necessary to ensure food security and the proper functioning of agricultural markets at national and global scales. Due to strong relationship between plant bio-physical parameters and the amount of electromagnetic radiation reflected (in certain ranges of the spectrum) from plants and then registered by sensors it is possible to predict crop yields. Other applications of remote sensing are intensively developed in the framework of so-called precision agriculture, in small spatial scales including individual fields. Data from ground-based measurements as well as from airborne or satellite images are used to develop yield and soil maps which can be used to determine the doses of irrigation and fertilization and to take decisions on the use of pesticides.


2020 ◽  
Author(s):  
Mariya Andriyanova ◽  
Aslanli Aslanli ◽  
Nataliya Basova ◽  
Viktor Bykov ◽  
Sergey Varfolomeev ◽  
...  

The collective monograph is devoted to discussing the history of creation, studying the properties, neutralizing and using organophosphorus neurotoxins, which include chemical warfare agents, agricultural crop protection chemical agents (herbicides and insecticides) and medicines. The monograph summarizes the results of current scientific research and new prospects for the development of this field of knowledge in the 21st century, including the use of modern physicochemical methods for experimental study and theoretical analysis of biocatalysis and its mechanisms based on molecular modeling with supercomputer power. The book is intended for specialists who are interested in the current state of research in the field of organophosphorus neurotoxins. The monograph will be useful for students, graduate students, researchers specializing in the field of physical chemistry, physicochemical biology, chemical enzymology, toxicology, biochemistry, molecular biology and genetics, biotechnology, nanotechnology and biomedicine.


2020 ◽  
Vol 65 (6) ◽  
pp. 1219-1229
Author(s):  
В.А. Четырбоцкий ◽  
◽  
А.Н. Четырбоцкий ◽  
Б.В. Левин ◽  
◽  
...  

A numerical simulation of the spatial-temporal dynamics of a multi-parameter system is developed. The components of this system are plant biomass, mobile and stationary forms of mineral nutrition elements, rhizosphere microorganisms and environmental parameters (temperature, humidity, acidity). Parametric identification and verification of the adequacy of the model were carried out based on the experimental data on the growth of spring wheat «Krasnoufimskaya-100» on peat lowland soil. The results are represented by temporal distributions of biomass from agricultural crop under study and the findings on the content of main nutrition elements within the plant (nitrogen, phosphorus, potassium). An agronomic assessment and interpretation of the obtained results are given.


2020 ◽  
Vol 12 (19) ◽  
pp. 3226
Author(s):  
Daniel Cunningham ◽  
Paul Cunningham ◽  
Matthew E. Fagan

Global tree cover products face challenges in accurately predicting tree cover across biophysical gradients, such as precipitation or agricultural cover. To generate a natural forest cover map for Costa Rica, biases in tree cover estimation in the most widely used tree cover product (the Global Forest Change product (GFC) were quantified and corrected, and the impact of map biases on estimates of forest cover and fragmentation was examined. First, a forest reference dataset was developed to examine how the difference between reference and GFC-predicted tree cover estimates varied along gradients of precipitation and elevation, and nonlinear statistical models were fit to predict the bias. Next, an agricultural land cover map was generated by classifying Landsat and ALOS PalSAR imagery (overall accuracy of 97%) to allow removing six common agricultural crops from estimates of tree cover. Finally, the GFC product was corrected through an integrated process using the nonlinear predictions of precipitation and elevation biases and the agricultural crop map as inputs. The accuracy of tree cover prediction increased by ≈29% over the original global forest change product (the R2 rose from 0.416 to 0.538). Using an optimized 89% tree cover threshold to create a forest/nonforest map, we found that fragmentation declined and core forest area and connectivity increased in the corrected forest cover map, especially in dry tropical forests, protected areas, and designated habitat corridors. By contrast, the core forest area decreased locally where agricultural fields were removed from estimates of natural tree cover. This research demonstrates a simple, transferable methodology to correct for observed biases in the Global Forest Change product. The use of uncorrected tree cover products may markedly over- or underestimate forest cover and fragmentation, especially in tropical regions with low precipitation, significant topography, and/or perennial agricultural production.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1117
Author(s):  
Anatoly Mikhailovich Zeyliger ◽  
Olga Sergeevna Ermolaeva

In the past few decades, combinations of remote sensing technologies with ground-based methods have become available for use at the level of irrigated fields. These approaches allow an evaluation of crop water stress dynamics and irrigation water use efficiency. In this study, remotely sensed and ground-based data were used to develop a method of crop water stress assessment and analysis. Input datasets of this method were based on the results of ground-based and satellite monitoring in 2012. Required datasets were collected for 19 irrigated alfalfa crops in the second year of growth at three study sites located in Saratovskoe Zavolzhie (Saratov Oblast, Russia). Collected datasets were applied to calculate the dynamics of daily crop water stress coefficients for all studied crops, thereby characterizing the efficiency of crop irrigation. Accordingly, data on the crop yield of three harvests were used. An analysis of the results revealed a linear relationship between the crop yield of three cuts and the average value of the water stress coefficient. Further application of this method may be directed toward analyzing the effectiveness of irrigation practices and the operational management of agricultural crop irrigation.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Nana Osei Owusu ◽  
Benedict Arthur ◽  
Emmanuel Mensah Aboagye

Insects ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 136
Author(s):  
Aaron Gassmann

The western corn rootworm, Diabrotica virgifera virgifera LeConte, is among the most serious pests of maize in the United States. Since 2003, transgenic maize that produces insecticidal toxins from the bacterium Bacillus thuringiensis (Bt) has been used to manage western corn rootworm by killing rootworm larvae, which feed on maize roots. In 2009, the first cases of field-evolved resistance to Bt maize were documented. These cases occurred in Iowa and involved maize that produced Bt toxin Cry3Bb1. Since then, resistance has expanded to include other geographies and additional Bt toxins, with some rootworm populations displaying resistance to all commercially available Bt traits. Factors that contributed to field-evolved resistance likely included non-recessive inheritance of resistance, minimal fitness costs of resistance and limited adult dispersal. Additionally, because maize is the primary agricultural crop on which rootworm larvae can survive, continuous maize cultivation, in particular continuous cultivation of Bt maize, appears to be another key factor facilitating resistance evolution. More diversified management of rootworm larvae, including rotating fields out of maize production and using soil-applied insecticide with non-Bt maize, in addition to planting refuges of non-Bt maize, should help to delay the evolution of resistance to current and future transgenic traits.


Sign in / Sign up

Export Citation Format

Share Document