scholarly journals Immunomodulatory potential of anti-idiotypic antibodies for the treatment of autoimmune diseases

2021 ◽  
Vol 7 (2) ◽  
pp. FSO648
Author(s):  
Shing Yi Pan ◽  
Yvonne Cashinn Chia ◽  
Hui Rong Yee ◽  
Angelina Ying Fang Cheng ◽  
Clarice Evey Anjum ◽  
...  

The immune system is a complex network of specialized cells and organs that recognises and reacts against foreign pathogens while remaining unresponsive to host tissues. This ability to self-tolerate is known as immunological tolerance. Autoimmune disease occurs when the immune system fails to differentiate between self and non-self antigens and releases autoantibodies to attack our own cells. Anti-idiotypic (anti-ID) antibodies are important in maintaining a balanced idiotypic regulatory network by neutralising and inhibiting the secretion of autoantibodies. Recently, anti-ID antibodies have been advanced as an alternative form of immunotherapy as they can specifically target autoantibodies, cause less toxicity and side effects, and could provide long-lasting immunity. This review article discusses the immunomodulatory potential of anti-ID antibodies for the treatment of autoimmune diseases.

Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1937
Author(s):  
Malgorzata Gabriela Wasniewska ◽  
Artur Bossowski

Autoimmune diseases (ADs) are characterized by a multifactorial etiology, in which genetic and environmental factors are responsible for the loss of immunological tolerance [...]


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3854-3854
Author(s):  
Alice Long ◽  
Mark Bonyhadi ◽  
Christophe Ferrand ◽  
Mark Frohlich ◽  
Ronald J. Berenson

Abstract Autoreactive T cells have been implicated as central players in many autoimmune diseases. Current therapy for autoimmune diseases involves chronic immunosuppression, which increases the risk of infection and cancer, and is associated with other side effects. Recently, high-dose chemotherapy combined with stem cell transplantation has been used, but is often associated with severe toxicities. To avoid the side effects associated with these therapies, we are developing an alternative therapeutic approach in which patients are treated with relatively non-toxic therapy to reduce T cell numbers, and then administered healthy T cells to restore the immune system. Most autoimmune patients have oligoclonal populations of T cells as measured by T cell receptor (TCR) repertoire analysis. These may represent autoreactive T cells which contribute to TCR repertoire skewing. Clinical studies have shown a positive correlation between post-therapy TCR repertoire normalization and remission of autoimmune diseases. We have developed the Xcellerate™ Technology for the ex vivo activation and expansion of T cells. To expand T cells, peripheral blood mononuclear cells (PBMCs) are cultured with microscopic paramagnetic beads conjugated with anti-CD3 and anti-CD28 mAbs (Xcyte™Dynabeads®). T cells manufactured using this or a similar technology have been administered to patients with cancer and HIV in several clinical trials. In these studies, we and others have shown that the Xcellerate Technology can normalize skewed TCR repertoires in these patient populations. In the present study, we evaluated the use of the Xcellerate Technology to grow T cells from patients with autoimmune diseases such as rheumatoid arthritis, scleroderma, Crohn’s disease and systemic lupus erythematosus. We collected data on cytokine secretion, activation marker expression, cell expansion and TCR repertoire. T cells expanded an average of 1,325 fold (±1,592; range=16–6,532; n=35 patients), with nearly all cultures displaying marked CD25 and CD154 upregulation, and secretion of high levels of IFNγ and GM-CSF. Similar to results observed in cancer patients, TCR repertoire analysis showed that the Xcellerate Technology can normalize the skewed repertoires observed in autoimmune patients. Out of 12 PBMCs examined by spectratype analysis, one showed no TCR Vβ skewing prior to expansion, whereas the remaining 11 tissues displayed varying degrees of skewedness. After expansion, repertoire skewedness was decreased for all 11 samples. Repertoire normalization was dependent upon high-levels of TCR/CD28 engagement, which was achieved by initiating cultures using high bead to T cell ratios (Figure 1). Neither type of autoimmune disease, disease severity nor patient treatment (including: steroids, melphalan, infliximab, rapamycin, etc.) at the time of blood collection had an adverse effect on the ability to expand the patients’ T cells. Based on these results, the Xcellerate Technology may prove useful for generating healthy T cells from patients with autoimmune diseases which could then be used to restore the immune system following lymphoablative therapy. Studies are underway to further evaluate this approach. Figure Figure


2001 ◽  
Vol 1 ◽  
pp. 633-635 ◽  
Author(s):  
Pratima Bansal-Pakala ◽  
Michael Croft

Immunological tolerance represents a mechanism by which cells of the host remain protected from the immune system. Breaking of immunological tolerance can result in a variety of autoimmune diseases such as rheumatoid arthritis, diabetes, and multiple sclerosis. The reasons for tolerance breaking down and autoimmune processes arising are largely unknown but of obvious interest for therapeutic intervention of these diseases. Although reversal of the tolerant state is generally unwanted, there are instances where this may be of benefit to the host. In particular, one way a cancerous cell escapes being targeted by the immune system is through tolerance mechanisms that in effect turn off the reactivity of T lymphocytes that can respond to tumor-associated peptides. Thus tolerance represents a major obstacle in developing effective immunotherapy against tumors. The molecules that are involved in regulating immunological tolerance are then of interest as they may be great targets for positively or negatively manipulating the tolerance process.


2017 ◽  
Vol 55 (4) ◽  
pp. 319
Author(s):  
E. M. PAPADOGIANNAKIS (E. Ι. ΠΑΠΑΔΟΓΙΑΝΝΑΚΗΣ)

Autoimmune diseases of the canine epidermis originate from the activation of the immune system against some adhesion molecules, which link the keratinocytes. Epidermal autoimmunity eventually induces acantholysis, which is thepathological hallmark of these skin diseases. In this review article, a thorough analysis of the immunopathogenesis for each of these skin diseases has been attempted along with the mechanisms that modulate the process of acantholysis. Epidermal autoimmune diseases in the dog include pemphigus foliaceus, vulgaris, panepidermal pustular, erythematosus, paraneoplastic and pharmaceutical. The recent advances in immunopathological and molecular techniques have markedly facilitated the understanding of their pathogenesis, thus giving the opportunity for the development of new therapeutic strategies that may lead to their successful treatment.


2020 ◽  
Author(s):  
Ayodeji Ajayi ◽  
Oluwadunsin Adebayo ◽  
Emmanuel Adebayo

Genomic-based information is an essential key to precise therapy referred to as personalized medicine. Its application in autoimmune disease treatment will bring the required breakthrough in medicine. Autoimmune diseases are the disease conditions where the body’s immune system recognizes and generate an immune response against self-antigens. There exist different approaches of which precision medicine data can be utilized in the clinical management of autoimmune diseases; this includes diagnosis, prognosis, stratification and treatment response prediction. Different markers exist to guide clinical decision while several others are still being identified and proposed. This chapter highlights data and databases in precision medicine of autoimmune diseases and the pathway for data sharing. The precision medicine of selected autoimmune diseases was discussed, and the different biomarkers utilized in the diagnosis, prognosis, stratification and response monitoring of such condition were considered.


Author(s):  
Robert Root-Bernstein

Current theories of autoimmunity are diverse, sometimes contradictory, and suffer from incompleteness. Although substantial evidence exists that adaptive and innate immunity, sex, genetic predisposition, and the microbiome all play essential roles in autoimmune disease etiologies and pathogenesis, and that antigen processing is altered during disease induction, no existing theory integrates all of these factors through a single, coherent mechanism. In an attempt to focus the field on the need to elucidate such an integrative mechanism, I propose one possibility here that, if nothing else, helps to identify the nature of the problems that need to be addressed. My theory is that autoimmune diseases are induced by normal immunological responses to unique pairs of complementary antigens, at least one of which is a molecular mimic of a host target.  Each antigen in the complementary pair induces a complementary immune response (T or B cell); although each immune response is idiotypic in origin, the antigenic complementarity results in what appears to be an idiotype-anti-idiotype relationship between the responses. Additionally, because of the antigenic complementarity, each immune response mimics one of antigens, abrogating the distinction between self and non-self. If at least one of the antigens mimics a host antigen, then the resulting immunological civil war spreads to a host tissue. Complementary antigens also alter antigen processing so that antigens that would normally be proteolytically digested are presented by the major histocompatibility complex (MHC) to T and B cell receptors inducing a cross-reactive immune response. The resulting civil war is supported by the innate immune system due to the complementarity of the initiating antigens.. Complementary antigens stimulate synergistic toll-like receptors (TLR) and/or nucleotide-binding oligomerization receptors (NOD) resulting in up-regulation of cytokine production and further stimulation of the adaptive immune response. Because the immune responses (e.g., antibodies) mimic the initiating antigens, this synergistic activation of innate immunity becomes chronic. Additionally, TLR and NOD function are highly sensitive to sex hormones, some becoming up-regulated and some down-regulated in the presence of either testosterone or estrogens. This sensitivity explains how sex modifies susceptibility to autoimmune diseases. Genetic mutations in TLR, NOD and MHC further alter antigen presentation and the degree to which antigens stimulate an immune response explaining how genetics also modifies susceptibility. Finally, sex hormones also alter the host microbiome, which in turn modulates autoimmune disease risk by shaping the immunological nature of self and by mediating susceptibility to microbial infection.  Moreover, it appears that the microbiome camouflages itself from the immune system by mimicking the host antigenic repertoire; the mimicry between the antigens of the microbiome and the host results in selective attacks on microbiome constituents concomitant with any autoimmune attack on host tissues. This antigenic complementarity theory thereby integrates all major elements known to affect, or be affected by, autoimmune diseases and provides a set of testable implications.


2021 ◽  
Vol 22 (3) ◽  
pp. 1144
Author(s):  
Ju Hun Suh ◽  
Hyeon Su Joo ◽  
Eun Be Hong ◽  
Hyeon Ji Lee ◽  
Jung Min Lee

Immunomodulation is on the cusp of being an important therapy for treating many diseases, due to the significant role of the immune system in defending the human body. Although the immune system is an essential defense system, overactivity can result in diverse sicknesses such as inflammation and autoimmune disease. Exosomes are emerging as a state-of-the-art therapeutic strategy for treating an overactive immune system. Thus, in this review, we will thoroughly review therapeutic applications of exosomes in various inflammatory and autoimmune diseases. Finally, issues for an outlook to the future of exosomal therapy will be introduced.


2015 ◽  
Vol 3 (1) ◽  
pp. 63-70
Author(s):  
Shubha Ratna Shakya

The immune system recognizes and eliminates foreign agents, and protects the host against infection. Autoimmunity is a natural phenomenon where self-reactive antibodies and autoimmune cells are present in all individuals. A combination of genetic predisposition and environmental factors contribute to the development of autoimmune diseases. Autoantibodies attack structures within individuals that produce them. Autoimmunity is a major cause for a number of serious and fatal diseases. Presence of one autoimmune disease increases the chance for simultaneously developing other autoimmune diseases in the same person.


2020 ◽  
Vol 5 (2) ◽  
pp. 439-456
Author(s):  
Jenny L. Pierce

Purpose This review article provides an overview of autoimmune diseases and their effects on voice and laryngeal function. Method A literature review was conducted in PubMed. Combinations of the following keywords were used: “autoimmune disease and upper airway,” “larynx,” “cough,” “voice,” “dysphonia,” and “dyspnea.” Precedence was given to articles published in the past 10 years due to recent advances in this area and to review articles. Ultimately, 115 articles were included for review. Results Approximately 81 autoimmune diseases exist, with 18 of those highlighted in the literature as having laryngeal involvement. The general and laryngeal manifestations of these 18 are discussed in detail, in addition to the clinical implications for a laryngeal expert. Conclusions Voice, breathing, and cough symptoms may be an indication of underlying autoimmune disease. However, these symptoms are often similar to those in the general population. Appropriate differential diagnosis and timely referral practices maximize patient outcomes. Guidelines are provided to facilitate correct diagnosis when an autoimmune disease is suspected.


2020 ◽  
Vol 75 (3) ◽  
pp. 204-213
Author(s):  
Varvara A. Ryabkova ◽  
Leonid P. Churilov ◽  
Yehuda Shoenfeld

The pathogenesis of autoimmune diseases is very complex and multi-factorial. The concept of Mosaics of Autoimmunity was introduced to the scientific community 30 years ago by Y. Shoenfeld and D.A. Isenberg, and since then new tiles to the puzzle are continuously added. This concept specifies general pathological ideas about the multifactorial threshold model for polygenic inheritance with a threshold effect by the action of a number of external causal factors as applied to the field of autoimmunology. Among the external factors that can excessively stimulate the immune system, contributing to the development of autoimmune reactions, researchers are particularly interested in chemical substances, which are widely used in pharmacology and medicine. In this review we highlight the autoimmune dynamics i.e. a multistep pathogenesis of autoimmune diseases and the subsequent development of lymphoma in some cases. In this context several issues are addressed namely, genetic basis of autoimmunity; environmental immunostimulatory risk factors; gene/environmental interaction; pre-clinical autoimmunity with the presence of autoantibodies; and the mechanisms, underlying lymphomagenesis in autoimmune pathology. We believe that understanding the common model of the pathogenesis of autoimmune diseases is the first step to their successful management.


Sign in / Sign up

Export Citation Format

Share Document