scholarly journals Study of hydrogeological conditions to ensure security of mining at Sokolovsky iron-ore deposit

Author(s):  
Timur Sh. Dalatkazin ◽  
◽  
Alfiia N. Kaiumova ◽  

Introduction. Complex hydrogeological conditions of the rock mass at Sokolovsky deposit are the cause of constant search for new solutions for industrial safety improvement. At the present time there is much information on engineering and geological conditions of the field rock mass which is a source of measures developed to ensure industrial safety and technological solutions in mining. Research aim. With the purpose of determining a tactics of mining security support, the information on the hydrogeological and engineering-geological conditions of Sokolovsky field was analyzed. Methodology. The article provides the details of Sokolovsky field structure. The factors have been revealed which are hazardous for mining: undrained hydrogeological horizons and complexes, karst, thixotropic rock within the open pit. These factors create the conditions for sludge and water accumulation and rush into the underground mine. The majority of sandshale rushes fall upon the main production horizons into the intake and transportation mine workings. Results. Directions have been determined for further investigation of the mechanism of hazardous phenomena development and realization in geological environment of the field; the investigation is directed at improving catastrophe prevention measures and personnel security measures. Summary. Currently, at the stage of field development, there emerged a need to study particular hydrogeological and geomechanical conditions in details in order to increase of effectiveness of drainage at local sites of the mass which are designed for ore extraction.

2018 ◽  
Vol 56 ◽  
pp. 02014
Author(s):  
Maksim Rasskazov ◽  
Marina Potapchuk ◽  
Gennady Kursakin ◽  
Denis Tsoy

The paper presents the results of geomechanical studies on the assessment of the potential rockburst hazard of the rock massif of the South Khingan deposit of manganese ore at the stage of development. Geodynamic zoning has been performed, mining and technical, mining and geological conditions of field development have been studied, and parameters of physical and mechanical properties of enclosing rocks and ores have been determined. Numerical simulation methods have been used to estimate the stress state of a rock massif at various stages of the deposit development. The tendency of the lower part of the South Khingan deposit to rockburst has been established. The complex of effective organizational and technical security measures has been substantiated in the development of this field.


2018 ◽  
Vol 41 ◽  
pp. 01007
Author(s):  
Yuriy Kutepov ◽  
Aleksandr Mironov ◽  
Maksim Sablin ◽  
Elena Borger

This article considers mining and geological conditions of the site “Blagodatny” of the mine named after A.D. Ruban located underneaththe old open pit coal mine and the hydraulic-mine dump. The potentially dangerous zones in the undermined rock mass have been identified based onthe conditions of formation of water inflow into mine workings. Safe depthof coal seams mining has been calculated depending on the type of water body – the hydraulic-mine dump.


2020 ◽  
Vol 174 ◽  
pp. 01025
Author(s):  
Vasilii Cheskidov ◽  
Hendrik Grobler ◽  
Dmitrii Kurenkov ◽  
Alexandra Lipina

The fast development of technologies for the collection, processing and interpretation of information, as well as significant complication of mining natural-technical systems, leads to the emergence of a need to revise the principles of monitoring mining facilities. The operation of modern sloping structures in mining enterprises is associated with high industrial and environmental risks, since the possibility of emergencies remains, and the scope of the accident consequences can be continental. The current conditions of mining require the development of new principles to assess and forecast the status of dumps, open pit slopes, tailings dams, and hydraulic dumps. The developed typification of mining and geological phenomena and factors that affect the stability of sloping structures allows the design of monitoring systems of their state with consideration to each object’s specifics. Besides, this approach is formalized and allows its implementation in conditions of digital technologies progress. The development of detailed models of slope structures, which should become their digital twins, at last, enables to evaluate the current state of the observed object at all stages of its life cycle, based on received surveying, engineering-geological and hydrogeological information, and predict the slope structure behavior in the short term and medium term. The main task to be solved is the creation of principles for the organization of monitoring at mining enterprises that will enhance environmental and industrial safety in conditions of significant complication of mining and geological conditions of operated mineral deposits.


2020 ◽  
Vol 174 ◽  
pp. 01016
Author(s):  
Aleksey Novinkov ◽  
Sergey Protasov ◽  
Pavel Samusev

At present, there are no standard methods for assessing seismic safety of underground mines during blasting on the earth’s surface. The need for such assessments arises when underground mines are located near open-pit coal mines, when the mine fields development is continued into the open pit, and when open surface coal mines use highwall miners. The issues of assessing seismic safety can be complicated by the lack of experimental data on vibration parameters, for example, if the answer is already required at the stage of new mines designing. The paper also provides an analysis of experimental data, including the results of monitoring the state of underground mines during seismic impacts of varying degrees of intensity. It is shown that the spread of the observed PPV, at which local damage or deformation of the underground mines has taken place, attains high values. In the absence of such data for underground mines in specific mining and geological conditions, it is recommended that the maximum allowable PPV vпр be assigned taking into account the class of underground mines and the type of support. At the same time, it is noted that the recommended vпр values given in the literature relate to the openings that were driven in the solid without geological disturbances and anomalies; not deviating from regulatory requirements regarding the state of workings; in the absence of danger of groundwater breakthrough; in the absence of danger of gas-dynamic phenomena, and other negative factors. If this is not the case, according to the requirements of the Federal norms and rules of industrial safety, the seismic safety distance should be increased by 2 times. This requirement is equivalent to multiplying the maximum permissible vibration velocity by a decreasing coefficient k=2b, where the power of two is the regression parameter b obtained from the experimental data processing.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1913
Author(s):  
Marek Cała ◽  
Katarzyna Cyran ◽  
Joanna Jakóbczyk ◽  
Michał Kowalski

The extraction of the Bełchatów lignite deposit located in the vicinity of the Dębina salt dome requires careful planning that considers the influence of mining projects on the slope and salt dome stability conditions. The instability problem is directly related to horizontal and vertical displacement, as well as the complex geological and mining conditions. These conditions are very unique with regard to the co-occurrence of the salt dome and lignite deposits in the same area, as well as the large scale of the pit wall slope. Thus, predicting rock mass behavior and ensuring the safety of mining operations are important issues. The presented analysis focused on the influence of long-term lignite extraction on the western pit wall slope of the Bełchatów field and the salt dome’s stability conditions. This study offers a comprehensive approach to a complex geotechnical problem defined by large-scale, complex geometry, and geological conditions. The rock mass behavior and stress conditions are simulated in numerical modelling. The results of the presented analysis will be useful not only for present mining activities but also for future developments related to post-mining and recultivation plans.


Author(s):  
B Hussan ◽  
M.I Lozynska ◽  
D.K Takhanov ◽  
A.O Oralbay ◽  
S.L Kuzmin

Purpose. To develop a methodology for assessing the quality of drilling-and-blasting operations when setting the side to the final position. In this regard, it is necessary to study the nature of deformations in the near-side masses of the design open-pit contours and to assess the seismic impact of blast waves in accordance with damage in the near and far zones from the open-pit boundary, as well as the level of generated seismic vibrations. Methodology.A methodology for assessing the quality of drilling-and-blasting operations at the limiting contour of open pits is developed using the analysis of the mining-and-geological conditions of the rocks constituting the field, in-situ surveying of the state of the open-pit sides, analysis of the physical-mechanical properties of the host rocks, analytical studies and instrumental measurements of the blasting effect. Findings.Based on the analytical methods, the calculation and analysis of the seismicity coefficient of the rocks at the field have been performed. By means of instrumental measurement of the blasting effect in open pit, data have been obtained on the seismic impact of blasting operations on the near-side mass. Based on the results of these works, a methodology for assessing drilling-and-blasting operations at the limiting contour of the open pit has been developed. Originality.In this work, to assess the blasting effect, the seismicity coefficient of the rock mass is used, which characterizes the degree of elastic response to external dynamic influence and is a parameter that determines the elastic seismic wave intensity with distance from the site of blasting operations. Based on the calculation, a map of the seismicity coefficient distribution in the open-pit area has been compiled. Using the method of instrumental measurements, which serves to determine the seismic impact of blasting on a rock mass, the degree of blasting effect on a near-side mass has been revealed. This made it possible to develop a method for assessing the blasting quality, based on determining the percentage of permissible deviations in the face drilling quality. Practical value.The results of the work will be used to calculate the safe parameters of conducting the blasting operations when setting the side to the final position. This method for assessing the quality of drilling-and-blasting operations can be applied at any mining enterprise conducting open-cut mining of minerals.


2021 ◽  
Vol 15 (3) ◽  
pp. 130-136
Author(s):  
Bolatkhan Hussan ◽  
Daulet Takhanov ◽  
Sergey Kuzmin ◽  
Sharabidin Abdibaitov

Purpose. Research into influence of drilling-and-blasting operations on the nature of deformation in near-side masses of the design open-pit contours and assessing the seismic impact of blasting operations, which are the basis for development of recommendations on the rational parameters of drilling-and-blasting operations. Methods. The influence of drilling-and-blasting operations at the limiting contour of the Kusmuryn field is studied using the analysis of the mining-and-geological conditions and tectonics of the rocks constituing the field, in-situ surveying the state of the open-pit sides, analysis of the physical and mechanical properties of the host rocks, analytical studies and instrumental measurements of the blasting effect. Findings. Based on the analytical methods, the calculation and analysis of the seismic stability of the rocks at the field have been performed. By means of instrumental measurement of the blasting effect in open pit, data have been obtained on the seismic impact of blasting operations on the near-side masses. According to the results of these works, rational parameters of drilling-and-blasting operations at the limiting contour of the open pit have been determined. In addition, the main provisions for the organization of drilling-and-blasting operations at the limiting contour of the open pit have been developed. Originality. In this work, for the first time, a joint research method is applied, which includes an analytical calculation of the shock wave seismic impact on a rock mass, based on the results of which the dependency graphs have been obtained of the seismicity coefficient on the rock hardness coefficient at the Kusmuryn field according to the Protodyakonov scale for various explosives, as well as using the method of instrumental measurements, which serves to determine the seismic impact of an explosion on a rock mass. This makes it possible to substantiate the technology of conducting the drilling-and-blasting operations at the contour, providing a long-term stable position of the permanent side of the open pit. Practical implications. The results of the work will be used to calculate the safe parameters of conducting the blasting operations when placing the side in the final position at the Kusmuryn field. This research method can be applied at any mining enterprise conducting open-cut mining of minerals.


Author(s):  
I.V. Abaturova ◽  
◽  
T.S. Bobina ◽  

Interest to the study of residual soil arose at a time when geological engineers faced the problem of developing the open pits in the eluvial soils. A significant number of Russian and foreign scientists considered the formation of weathering crusts from different points of view. They established the geochemical zoning, and engineeringgeological zoning of the weathering crusts. However, no comprehensive and detailed engineering-geological zonation of the crusts of weathering, especially when studying mineral deposits, was given due to the insufficient attention paid to it until today. Therefore, it is important to correctly determine the type and profile of the residual soil in order to establish the possibility to control the engineering and geological conditions when exposing the rock mass during excavation work for further forecasting the slope stability of the projected open pit mining structures


Author(s):  
M.B Nurpeisova ◽  
M.Zh Bitimbayev ◽  
K.B Rysbekov ◽  
Sh. Sh Bekbasarov

Purpose. Developing the methods for forecasting changes in the geological environment based on integrated monitoring, which ensures industrial and environmental safety of Central Kazakhstan region. Methodology. Integrated approach was used in the work, including: study on mining and geological conditions, structural features of rocks and conducting mine surveying at mines on the basis of modern methods and means of geomonitoring developed by the authors. Findings. Methodology for integrated geodynamic monitoring system is developed. A new method of geodynamic polygon establishment is proposed. Study results were implemented at operating mining enterprises during implementation of projects Comprehensive monitoring of slow deformation processes of the earths surface during large-scale development of ore deposits in Central Kazakhstan and Development of innovative methods for forecasting and assessing the state of rock mass to prevent technogenic emergencies, and the results were used in the educational process of Satbayev University. Originality. As a result of the research work carried out, the following were created and introduced into production: - geodynamic polygon (GDP) of the area, established on the basis of the nodal method, combined with leveling, satellite and seismological points, allowing monitoring coverage of exploration and mining operations, as well as increasing efficiency of observations and reducing capital costs for mineral production; - developed constructions of permanent (ground and underground) forced centering points (FCP), which allow increasing productivity and observations accuracy; - method for photographing structural features of rock mass using a 3D laser scanner, which makes it possible to study elements of cracks occurrence and faults in rocks in sufficient detail; - composition of strengthening solution from mining waste to increase stability of disturbed sections of open cast benches was developed. The novelty of the developed methods and means is confirmed by RK patents for invention. Practical value. Obtained results can be used to improve the level of industrial safety at mines and minimize environmental risks caused by subsoil development.


2012 ◽  
Vol 57 (2) ◽  
pp. 363-373
Author(s):  
Jan Macuda

Abstract In Poland all lignite mines are dewatered with the use of large-diameter wells. Drilling of such wells is inefficient owing to the presence of loose Quaternary and Tertiary material and considerable dewatering of rock mass within the open pit area. Difficult geological conditions significantly elongate the time in which large-diameter dewatering wells are drilled, and various drilling complications and break-downs related to the caving may occur. Obtaining higher drilling rates in large-diameter wells can be achieved only when new cutter bits designs are worked out and rock drillability tests performed for optimum mechanical parameters of drilling technology. Those tests were performed for a bit ø 1.16 m in separated macroscopically homogeneous layers of similar drillability. Depending on the designed thickness of the drilled layer, there were determined measurement sections from 0.2 to 1.0 m long, and each of the sections was drilled at constant rotary speed and weight on bit values. Prior to drillability tests, accounting for the technical characteristic of the rig and strength of the string and the cutter bit, there were established limitations for mechanical parameters of drilling technology: P ∈ (Pmin; Pmax) n ∈ (nmin; nmax) where: Pmin; Pmax - lowest and highest values of weight on bit, nmin; nmax - lowest and highest values of rotary speed of bit, For finding the dependence of the rate of penetration on weight on bit and rotary speed of bit various regression models have been analyzed. The most satisfactory results were obtained for the exponential model illustrating the influence of weight on bit and rotary speed of bit on drilling rate. The regression coefficients and statistical parameters prove the good fit of the model to measurement data, presented in tables 4-6. The average drilling rate for a cutter bit with profiled wings has been described with the form: Vśr= Z ·Pa· nb where: Vśr- average drilling rate, Z - drillability coefficient, P - weight on bit, n - rotary speed of bit, a - coefficient of influence of weight on bit on drilling rate, b - coefficient of influence of rotary speed of bit on drilling rate. Industrial tests were performed for assessing the efficiency of drilling of large-diameter wells with a cutter bit having profiled wings ø 1.16 m according to elaborated model of average rate of drilling. The obtained values of average rate of drilling during industrial tests ranged from 8.33×10-4 to 1.94×10-3 m/s and were higher than the ones obtained so far, i.e. from 181.21 to 262.11%.


Sign in / Sign up

Export Citation Format

Share Document