scholarly journals In vitro biofilm formation by Staphylococcus aureus isolated from wounds of hospital-admitted patients and their association with antimicrobial resistance

2018 ◽  
Vol Volume 11 ◽  
pp. 25-32 ◽  
Author(s):  
Puja Neopane ◽  
Hari Prasad Nepal ◽  
Rojeet Shrestha ◽  
Osamu Uehara ◽  
Yoshihiro Abiko
2019 ◽  
Vol 42 ◽  
pp. e45231
Author(s):  
Camila Lampugnani ◽  
Maike Taís Maziero Montanhini ◽  
Maria Emilene Martino Campos‐Galvão ◽  
Luis Augusto Nero ◽  
Luciano dos Santos Bersot

This study aimed to isolate Staphylococcus aureus in refrigerated raw cow milk, and identify the presence of enterotoxin-expression genes, enterotoxin production and adherence ability, and antimicrobial resistance potential of the isolated strains. Fifty raw milk samples obtained in different dairy farms were analyzed for S. aureus and evaluated in the isolates the presence of genes associated with the production of major staphylococcal enterotoxins and biofilm formation. In vitro assays were also performed to evaluate the production of enterotoxins and adherence ability, and the antimicrobial resistance. One half (25/50) of raw milk samples presented coagulase-positive staphylococci and 95.2% of the isolates were confirmed to be S. aureus. Among them, 42.4% were carrying genes for enterotoxins production; however, only one isolate was able to produce enterotoxins. All S. aureus isolates were carrying at least two genes associated with biofilm formation and 95.2% isolates was able to adhere upon the in vitro assay. All isolates demonstrated antimicrobial resistance potential to one or more of the tested antibiotics.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andi R. Sultan ◽  
Kirby R. Lattwein ◽  
Nicole A. Lemmens-den Toom ◽  
Susan V. Snijders ◽  
Klazina Kooiman ◽  
...  

AbstractStaphylococcus aureus biofilms are a major problem in modern healthcare due to their resistance to immune system defenses and antibiotic treatments. Certain analgesic agents are able to modulate S. aureus biofilm formation, but currently no evidence exists if paracetamol, often combined with antibiotic treatment, also has this effect. Therefore, we aimed to investigate if paracetamol can modulate S. aureus biofilm formation. Considering that certain regulatory pathways for biofilm formation and virulence factor production by S. aureus are linked, we further investigated the effect of paracetamol on immune modulator production. The in vitro biofilm mass of 21 S. aureus strains from 9 genetic backgrounds was measured in the presence of paracetamol. Based on biofilm mass quantity, we further investigated paracetamol-induced biofilm alterations using a bacterial viability assay combined with N-Acetylglucosamine staining. Isothermal microcalorimetry was used to monitor the effect of paracetamol on bacterial metabolism within biofilms and green fluorescent protein (GFP) promoter fusion technology for transcription of staphylococcal complement inhibitor (SCIN). Clinically relevant concentrations of paracetamol enhanced biofilm formation particularly among strains belonging to clonal complex 8 (CC8), but had minimal effect on S. aureus planktonic growth. The increase of biofilm mass can be attributed to the marked increase of N-Acetylglucosamine containing components of the extracellular matrix, presumably polysaccharide intercellular adhesion. Biofilms of RN6390A (CC8) showed a significant increase in the immune modulator SCIN transcription during co-incubation with low concentrations of paracetamol. Our data indicate that paracetamol can enhance biofilm formation. The clinical relevance needs to be further investigated.


2001 ◽  
Vol 69 (6) ◽  
pp. 4079-4085 ◽  
Author(s):  
Sarah E. Cramton ◽  
Martina Ulrich ◽  
Friedrich Götz ◽  
Gerd Döring

ABSTRACT Products of the intercellular adhesion (ica) operon in Staphylococcus aureus and Staphylococcus epidermidis synthesize a linear β-1,6-linked glucosaminylglycan. This extracellular polysaccharide mediates bacterial cell-cell adhesion and is required for biofilm formation, which is thought to increase the virulence of both pathogens in association with prosthetic biomedical implants. The environmental signal(s) that triggers ica gene product and polysaccharide expression is unknown. Here we demonstrate that anaerobic in vitro growth conditions lead to increased polysaccharide expression in both S. aureus and S. epidermidis, although the regulation is less stringent inS. epidermidis. Anaerobiosis also dramatically stimulates ica-specific mRNA expression inica- and polysaccharide-positive strains of both S. aureus and S. epidermidis.These data suggest a mechanism whereby ica gene expression and polysaccharide production may act as a virulence factor in an anaerobic environment in vivo.


2018 ◽  
Vol 9 ◽  
Author(s):  
Omar Camarillo-Márquez ◽  
Itzel M. Córdova-Alcántara ◽  
Cesar H. Hernández-Rodríguez ◽  
Blanca E. García-Pérez ◽  
María A. Martínez-Rivera ◽  
...  

Antioxidants ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 117 ◽  
Author(s):  
Federica Blando ◽  
Rossella Russo ◽  
Carmine Negro ◽  
Luigi De Bellis ◽  
Stefania Frassinetti

Plant extracts are a rich source of natural compounds with antimicrobial properties, which are able to prevent, at some extent, the growth of foodborne pathogens. The aim of this study was to investigate the potential of polyphenolic extracts from cladodes of Opuntia ficus-indica (L.) Mill. to inhibit the growth of some enterobacteria and the biofilm formation by Staphylococcus aureus. Opuntia ficus-indica cladodes at two stages of development were analysed for total phenolic content and antioxidant activity by Oxygen Radical Absorbance Capacity (ORAC) and Trolox equivalent antioxidant capacity (TEAC) (in vitro assays) and by cellular antioxidant activity in red blood cells (CAA-RBC) (ex vivo assay). The Liquid Chromatography Time-of-Flight Mass Spectrometry (LC/MS–TOF) analysis of the polyphenolic extracts revealed high levels of piscidic acid, eucomic acid, isorhamnetin derivatives and rutin, particularly in the immature cladode extracts. Opuntia cladodes extracts showed a remarkable antioxidant activity (in vitro and ex vivo), a selective inhibition of the growth of Gram-positive bacteria, and an inhibition of Staphylococcus aureus biofilm formation. Our results suggest and confirm that Opuntia ficus-indica cladode extracts could be employed as functional food, due to the high polyphenolic content and antioxidant capacity, and used as natural additive for food process control and food safety.


2010 ◽  
Vol 124 (6) ◽  
pp. 594-598 ◽  
Author(s):  
C H Jang ◽  
H Park ◽  
Y B Cho ◽  
C H Choi

AbstractBackground and objective:Bacterial biofilm formation has been implicated in the high incidence of persistent otorrhoea after tympanostomy tube insertion. It has been suggested that the tube material may be an important factor in the persistence of such otorrhoea. Development of methicillin-resistant Staphylococcus aureus otorrhoea after tympanostomy tube placement is a growing concern. We evaluated the effect of using vancomycin and chitosan coated tympanostomy tubes on the incidence of methicillin-resistant Staphylococcus aureus biofilm formation in vitro.Materials and methods:Three sets each of vancomycin-coated silicone tubes (n = 5), commercial silver oxide coated silicone tubes (n = 5) and uncoated tympanostomy tubes (as controls; n = 5) were compared as regards resistance to methicillin-resistant Staphylococcus aureus biofilm formation after in vitro incubation.Results:Scanning electron microscopy showed that the surfaces of the silver oxide coated tubes supported the formation of thick biofilms with crusts, comparable to the appearance of the uncoated tubes. In contrast, the surface of the vancomycin-coated tympanostomy tubes was virtually devoid of methicillin-resistant Staphylococcus aureus biofilm.Conclusion:Vancomycin-coated tympanostomy tubes resist methicillin-resistant Staphylococcus aureus biofilm formation. Pending further study, such tubes show promise in assisting the control of methicillin-resistant Staphylococcus aureus biofilm formation.


2016 ◽  
Vol 60 (10) ◽  
pp. 5688-5694 ◽  
Author(s):  
Daniel G. Meeker ◽  
Karen E. Beenken ◽  
Weston B. Mills ◽  
Allister J. Loughran ◽  
Horace J. Spencer ◽  
...  

ABSTRACTWe usedin vitroandin vivomodels of catheter-associated biofilm formation to compare the relative activity of antibiotics effective against methicillin-resistantStaphylococcus aureus(MRSA) in the specific context of an established biofilm. The results demonstrated that, underin vitroconditions, daptomycin and ceftaroline exhibited comparable activity relative to each other and greater activity than vancomycin, telavancin, oritavancin, dalbavancin, or tigecycline. This was true when assessed using established biofilms formed by the USA300 methicillin-resistant strain LAC and the USA200 methicillin-sensitive strain UAMS-1. Oxacillin exhibited greater activity against UAMS-1 than LAC, as would be expected, since LAC is an MRSA strain. However, the activity of oxacillin was less than that of daptomycin and ceftaroline even against UAMS-1. Among the lipoglycopeptides, telavancin exhibited the greatest overall activity. Specifically, telavancin exhibited greater activity than oritavancin or dalbavancin when tested against biofilms formed by LAC and was the only lipoglycopeptide capable of reducing the number of viable bacteria below the limit of detection. With biofilms formed by UAMS-1, telavancin and dalbavancin exhibited comparable activity relative to each other and greater activity than oritavancin. Importantly, ceftaroline was the only antibiotic that exhibited greater activity than vancomycin when testedin vivoin a murine model of catheter-associated biofilm formation. These results emphasize the need to consider antibiotics other than vancomycin, most notably, ceftaroline, for the treatment of biofilm-associatedS. aureusinfections, including by the matrix-based antibiotic delivery methods often employed for local antibiotic delivery in the treatment of these infections.


2012 ◽  
Vol 1415 ◽  
Author(s):  
Qi Wang ◽  
Thomas J. Webster

ABSTRACTBiofilms are a common cause of persistent infections on medical devices as they are easy to form and hard to treat. Selenium and its compounds are considered to be a novel material for a wide range of applications including anticancer applications and antibacterial applications. The objective of this study was to coat selenium nanoparticles on the surface of polycarbonate medical devices and examine their effectiveness at preventing biofilm formation. The results of this in vitro study showed that the selenium coating significantly inhibited Staphylococcus aureus growth on the surface of polycarbonate after 24 hours. Thus, this study suggests that coating polymers with nanostructured selenium is a fast and effective way to reduce bacteria functions leading to medical device infections.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1093
Author(s):  
Daniel Hassan ◽  
Calvin A. Omolo ◽  
Victoria Oluwaseun Fasiku ◽  
Ahmed A Elrashedy ◽  
Chunderika Mocktar ◽  
...  

Globally, human beings continue to be at high risk of infectious diseases caused by methicillin-resistant Staphylococcus aureus (MRSA); and current treatments are being depleted due to antimicrobial resistance. Therefore, the synthesis and formulation of novel materials is essential for combating antimicrobial resistance. The study aimed to synthesize a quaternary bicephalic surfactant (StBAclm) and thereof to formulate pH-responsive vancomycin (VCM)-loaded quatsomes to enhance the activity of the antibiotic against MRSA. The surfactant structure was confirmed using 1H, 13C nuclear magnetic resonance (NMR), Fourier-transform infrared spectroscopy (FT-IR), and high-resolution mass spectrometry (HRMS). The quatsomes were prepared using a sonication/dispersion method and were characterized using various in vitro, in vivo, and in silico techniques. The in vitro cell biocompatibility studies of the surfactant and pH-responsive vancomycin-loaded quatsomes (VCM-StBAclm-Qt1) revealed that they are biosafe. The prepared quatsomes had a mean hydrodynamic diameter (MHD), polydispersity index (PDI), and drug encapsulation efficiency (DEE) of 122.9 ± 3.78 nm, 0.169 ± 0.02 mV, and 52.22 ± 8.4%, respectively, with surface charge switching from negative to positive at pH 7.4 and pH 6.0, respectively. High-resolution transmission electron microscopy (HR-TEM) characterization of the quatsomes showed spherical vesicles with MHD similar to the one obtained from the zeta-sizer. The in vitro drug release of VCM from the quatsomes was faster at pH 6.0 compared to pH 7.4. The minimum inhibitory concentration (MIC) of the drug loaded quatsomes against MRSA was 32-fold and 8-fold lower at pH 6.0 and pH 7.4, respectively, compared to bare VCM, demonstrating the pH-responsiveness of the quatsomes and the enhanced activity of VCM at acidic pH. The drug-loaded quatsomes demonstrated higher electrical conductivity and a decrease in protein and deoxyribonucleic acid (DNA) concentrations as compared to the bare drug. This confirmed greater MRSA membrane damage, compared to treatment with bare VCM. The flow cytometry study showed that the drug-loaded quatsomes had a similar bactericidal killing effect on MRSA despite a lower (8-fold) VCM concentration when compared to the bare VCM. Fluorescence microscopy revealed the ability of the drug-loaded quatsomes to eradicate MRSA biofilms. The in vivo studies in a skin infection mice model showed that groups treated with VCM-loaded quatsomes had a 13-fold decrease in MRSA CFUs when compared to the bare VCM treated groups. This study confirmed the potential of pH-responsive VCM-StBAclm quatsomes as an effective delivery system for targeted delivery and for enhancing the activity of antibiotics.


Sign in / Sign up

Export Citation Format

Share Document